L(s) = 1 | + 1.73·2-s + 0.999·4-s + 3.46·5-s − 7-s − 1.73·8-s + 5.99·10-s − 3.46·11-s + 5·13-s − 1.73·14-s − 5·16-s − 19-s + 3.46·20-s − 5.99·22-s − 6.92·23-s + 6.99·25-s + 8.66·26-s − 0.999·28-s − 3.46·29-s + 5·31-s − 5.19·32-s − 3.46·35-s − 37-s − 1.73·38-s − 6.00·40-s + 3.46·41-s − 43-s − 3.46·44-s + ⋯ |
L(s) = 1 | + 1.22·2-s + 0.499·4-s + 1.54·5-s − 0.377·7-s − 0.612·8-s + 1.89·10-s − 1.04·11-s + 1.38·13-s − 0.462·14-s − 1.25·16-s − 0.229·19-s + 0.774·20-s − 1.27·22-s − 1.44·23-s + 1.39·25-s + 1.69·26-s − 0.188·28-s − 0.643·29-s + 0.898·31-s − 0.918·32-s − 0.585·35-s − 0.164·37-s − 0.280·38-s − 0.948·40-s + 0.541·41-s − 0.152·43-s − 0.522·44-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.376216278 |
L(21) |
≈ |
2.376216278 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1−1.73T+2T2 |
| 5 | 1−3.46T+5T2 |
| 7 | 1+T+7T2 |
| 11 | 1+3.46T+11T2 |
| 13 | 1−5T+13T2 |
| 17 | 1+17T2 |
| 19 | 1+T+19T2 |
| 23 | 1+6.92T+23T2 |
| 29 | 1+3.46T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−3.46T+41T2 |
| 43 | 1+T+43T2 |
| 47 | 1+3.46T+47T2 |
| 53 | 1+10.3T+53T2 |
| 59 | 1−3.46T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1−10.3T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1+T+79T2 |
| 83 | 1−6.92T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60055799547426009652810274468, −11.27363637433942366154952747032, −10.21723916378989491163277649923, −9.388168687038182801682601425010, −8.223590322904053967862384369796, −6.38988047348155697162740997975, −5.94367436151325889775645239570, −4.95763268889965373286462212722, −3.52168957571220695631214088920, −2.21095194874431803639976263612,
2.21095194874431803639976263612, 3.52168957571220695631214088920, 4.95763268889965373286462212722, 5.94367436151325889775645239570, 6.38988047348155697162740997975, 8.223590322904053967862384369796, 9.388168687038182801682601425010, 10.21723916378989491163277649923, 11.27363637433942366154952747032, 12.60055799547426009652810274468