Properties

Label 2-3e5-1.1-c1-0-2
Degree $2$
Conductor $243$
Sign $1$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.879·2-s − 1.22·4-s + 3.87·5-s − 2.18·7-s + 2.83·8-s − 3.41·10-s + 0.162·11-s + 2.41·13-s + 1.92·14-s − 0.0418·16-s + 3·17-s + 3.59·19-s − 4.75·20-s − 0.142·22-s + 2.83·23-s + 10.0·25-s − 2.12·26-s + 2.68·28-s + 6.71·29-s − 5.18·31-s − 5.63·32-s − 2.63·34-s − 8.47·35-s − 6.63·37-s − 3.16·38-s + 11.0·40-s − 5.80·41-s + ⋯
L(s)  = 1  − 0.621·2-s − 0.613·4-s + 1.73·5-s − 0.825·7-s + 1.00·8-s − 1.07·10-s + 0.0489·11-s + 0.668·13-s + 0.513·14-s − 0.0104·16-s + 0.727·17-s + 0.825·19-s − 1.06·20-s − 0.0304·22-s + 0.591·23-s + 2.00·25-s − 0.415·26-s + 0.506·28-s + 1.24·29-s − 0.931·31-s − 0.996·32-s − 0.452·34-s − 1.43·35-s − 1.09·37-s − 0.513·38-s + 1.74·40-s − 0.905·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $1$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.010987664\)
\(L(\frac12)\) \(\approx\) \(1.010987664\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 0.879T + 2T^{2} \)
5 \( 1 - 3.87T + 5T^{2} \)
7 \( 1 + 2.18T + 7T^{2} \)
11 \( 1 - 0.162T + 11T^{2} \)
13 \( 1 - 2.41T + 13T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 - 3.59T + 19T^{2} \)
23 \( 1 - 2.83T + 23T^{2} \)
29 \( 1 - 6.71T + 29T^{2} \)
31 \( 1 + 5.18T + 31T^{2} \)
37 \( 1 + 6.63T + 37T^{2} \)
41 \( 1 + 5.80T + 41T^{2} \)
43 \( 1 + 6.22T + 43T^{2} \)
47 \( 1 - 7.39T + 47T^{2} \)
53 \( 1 - 1.40T + 53T^{2} \)
59 \( 1 + 5.12T + 59T^{2} \)
61 \( 1 + 3.78T + 61T^{2} \)
67 \( 1 + 5.86T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 - 8.68T + 73T^{2} \)
79 \( 1 + 1.26T + 79T^{2} \)
83 \( 1 + 8.47T + 83T^{2} \)
89 \( 1 - 7.72T + 89T^{2} \)
97 \( 1 + 3.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.28567389627815479712880957968, −10.62740667381714668091185561312, −10.01143109856155763317372996753, −9.322533113220758939042946339339, −8.587142896621799696795124404139, −7.09376223963121658702144740823, −5.97773236735291929112212846295, −5.05660061292174397537848008291, −3.24205600505402485305254034467, −1.41432758405549024508711089502, 1.41432758405549024508711089502, 3.24205600505402485305254034467, 5.05660061292174397537848008291, 5.97773236735291929112212846295, 7.09376223963121658702144740823, 8.587142896621799696795124404139, 9.322533113220758939042946339339, 10.01143109856155763317372996753, 10.62740667381714668091185561312, 12.28567389627815479712880957968

Graph of the $Z$-function along the critical line