Properties

Label 2-3e4-9.7-c7-0-0
Degree $2$
Conductor $81$
Sign $0.766 + 0.642i$
Analytic cond. $25.3031$
Root an. cond. $5.03022$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8.29 + 14.3i)2-s + (−73.6 − 127. i)4-s + (−57.0 − 98.8i)5-s + (−719. + 1.24e3i)7-s + 320.·8-s + 1.89e3·10-s + (−2.96e3 + 5.13e3i)11-s + (5.72e3 + 9.91e3i)13-s + (−1.19e4 − 2.06e4i)14-s + (6.76e3 − 1.17e4i)16-s − 2.02e4·17-s − 6.35e3·19-s + (−8.41e3 + 1.45e4i)20-s + (−4.91e4 − 8.51e4i)22-s + (−3.79e4 − 6.56e4i)23-s + ⋯
L(s)  = 1  + (−0.733 + 1.27i)2-s + (−0.575 − 0.996i)4-s + (−0.204 − 0.353i)5-s + (−0.792 + 1.37i)7-s + 0.221·8-s + 0.599·10-s + (−0.671 + 1.16i)11-s + (0.722 + 1.25i)13-s + (−1.16 − 2.01i)14-s + (0.413 − 0.715i)16-s − 0.998·17-s − 0.212·19-s + (−0.235 + 0.407i)20-s + (−0.984 − 1.70i)22-s + (−0.649 − 1.12i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.766 + 0.642i$
Analytic conductor: \(25.3031\)
Root analytic conductor: \(5.03022\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (55, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :7/2),\ 0.766 + 0.642i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0386569 - 0.0140699i\)
\(L(\frac12)\) \(\approx\) \(0.0386569 - 0.0140699i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (8.29 - 14.3i)T + (-64 - 110. i)T^{2} \)
5 \( 1 + (57.0 + 98.8i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + (719. - 1.24e3i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + (2.96e3 - 5.13e3i)T + (-9.74e6 - 1.68e7i)T^{2} \)
13 \( 1 + (-5.72e3 - 9.91e3i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + 2.02e4T + 4.10e8T^{2} \)
19 \( 1 + 6.35e3T + 8.93e8T^{2} \)
23 \( 1 + (3.79e4 + 6.56e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-3.73e4 + 6.47e4i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + (-9.46e4 - 1.63e5i)T + (-1.37e10 + 2.38e10i)T^{2} \)
37 \( 1 + 3.34e4T + 9.49e10T^{2} \)
41 \( 1 + (7.06e4 + 1.22e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (-1.23e5 + 2.13e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 + (1.67e5 - 2.90e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 - 1.65e6T + 1.17e12T^{2} \)
59 \( 1 + (1.02e6 + 1.77e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-2.95e5 + 5.11e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (2.67e4 + 4.63e4i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + 4.95e6T + 9.09e12T^{2} \)
73 \( 1 - 8.17e5T + 1.10e13T^{2} \)
79 \( 1 + (3.78e6 - 6.55e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + (-5.09e5 + 8.82e5i)T + (-1.35e13 - 2.35e13i)T^{2} \)
89 \( 1 - 1.37e6T + 4.42e13T^{2} \)
97 \( 1 + (-5.30e6 + 9.18e6i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24337430094005766153934928411, −12.73077347947956133749640318174, −11.93094928434930780493120963702, −10.09917307467967173422658999573, −8.965690873889495235492535145981, −8.451383896729531522942746342209, −6.88156402191491428397361319870, −6.12718822591630372598392694069, −4.64865420775663160489088298364, −2.35653300627006348107225912953, 0.02152337680190510211394280358, 0.977647064736156044238460879109, 2.93900583060122940847668151462, 3.75037071180836264091732757065, 6.04961476349489908367202594276, 7.61348390936002952912783789080, 8.787122750312978573654394421954, 10.18269509260099095272819910127, 10.67782826018809192787803220272, 11.51219813011226259187958313851

Graph of the $Z$-function along the critical line