Properties

Label 2-3e4-9.5-c8-0-25
Degree $2$
Conductor $81$
Sign $0.422 + 0.906i$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.2 − 12.8i)2-s + (201. − 349. i)4-s + (−176. − 102. i)5-s + (1.85e3 + 3.20e3i)7-s − 3.78e3i·8-s − 5.24e3·10-s + (1.39e4 − 8.05e3i)11-s + (1.84e4 − 3.19e4i)13-s + (8.23e4 + 4.75e4i)14-s + (3.00e3 + 5.21e3i)16-s − 4.75e4i·17-s + 2.13e5·19-s + (−7.14e4 + 4.12e4i)20-s + (2.06e5 − 3.58e5i)22-s + (−1.43e5 − 8.30e4i)23-s + ⋯
L(s)  = 1  + (1.39 − 0.802i)2-s + (0.788 − 1.36i)4-s + (−0.283 − 0.163i)5-s + (0.771 + 1.33i)7-s − 0.924i·8-s − 0.524·10-s + (0.952 − 0.550i)11-s + (0.646 − 1.11i)13-s + (2.14 + 1.23i)14-s + (0.0459 + 0.0795i)16-s − 0.569i·17-s + 1.64·19-s + (−0.446 + 0.257i)20-s + (0.883 − 1.52i)22-s + (−0.514 − 0.296i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.422 + 0.906i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.422 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.422 + 0.906i$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ 0.422 + 0.906i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(4.23523 - 2.69814i\)
\(L(\frac12)\) \(\approx\) \(4.23523 - 2.69814i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-22.2 + 12.8i)T + (128 - 221. i)T^{2} \)
5 \( 1 + (176. + 102. i)T + (1.95e5 + 3.38e5i)T^{2} \)
7 \( 1 + (-1.85e3 - 3.20e3i)T + (-2.88e6 + 4.99e6i)T^{2} \)
11 \( 1 + (-1.39e4 + 8.05e3i)T + (1.07e8 - 1.85e8i)T^{2} \)
13 \( 1 + (-1.84e4 + 3.19e4i)T + (-4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 + 4.75e4iT - 6.97e9T^{2} \)
19 \( 1 - 2.13e5T + 1.69e10T^{2} \)
23 \( 1 + (1.43e5 + 8.30e4i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (1.17e6 - 6.80e5i)T + (2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + (-1.09e5 + 1.89e5i)T + (-4.26e11 - 7.38e11i)T^{2} \)
37 \( 1 - 1.15e6T + 3.51e12T^{2} \)
41 \( 1 + (-6.43e5 - 3.71e5i)T + (3.99e12 + 6.91e12i)T^{2} \)
43 \( 1 + (-1.46e6 - 2.53e6i)T + (-5.84e12 + 1.01e13i)T^{2} \)
47 \( 1 + (-6.31e6 + 3.64e6i)T + (1.19e13 - 2.06e13i)T^{2} \)
53 \( 1 - 2.55e6iT - 6.22e13T^{2} \)
59 \( 1 + (4.44e6 + 2.56e6i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (-1.34e6 - 2.33e6i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (3.19e5 - 5.53e5i)T + (-2.03e14 - 3.51e14i)T^{2} \)
71 \( 1 + 3.72e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.13e7T + 8.06e14T^{2} \)
79 \( 1 + (-2.50e7 - 4.33e7i)T + (-7.58e14 + 1.31e15i)T^{2} \)
83 \( 1 + (2.83e7 - 1.63e7i)T + (1.12e15 - 1.95e15i)T^{2} \)
89 \( 1 + 6.85e6iT - 3.93e15T^{2} \)
97 \( 1 + (-4.14e7 - 7.17e7i)T + (-3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31255910467206473649600363858, −11.73517491512962026072163565011, −10.94575667799734020323165428436, −9.245853119441584630819296214213, −7.995544814671878685822272511005, −5.91986043939673029981742926038, −5.24150046551719116488369809832, −3.80190798327725312525615952505, −2.65268848889235736576181292215, −1.21264841634236955623932069159, 1.40764337333815883558360906340, 3.81496875331262113116254049855, 4.22709863986648476067890761597, 5.75036466532292590185127129470, 7.07285543808244338697173124754, 7.65386622482241448877424525483, 9.532950442637514360392380926193, 11.20560686816247638175459107009, 11.93186278749432282686555348073, 13.39321194795795102474970956445

Graph of the $Z$-function along the critical line