Properties

Label 2-3e4-9.4-c9-0-12
Degree $2$
Conductor $81$
Sign $0.939 + 0.342i$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.2 − 19.4i)2-s + (4 − 6.92i)4-s + (246. − 427. i)5-s + (381.5 + 660. i)7-s − 1.16e4·8-s − 1.10e4·10-s + (2.84e4 + 4.92e4i)11-s + (3.65e4 − 6.32e4i)13-s + (8.56e3 − 1.48e4i)14-s + (1.28e5 + 2.23e5i)16-s + 1.68e5·17-s − 5.98e5·19-s + (−1.97e3 − 3.42e3i)20-s + (6.38e5 − 1.10e6i)22-s + (−1.20e6 + 2.07e6i)23-s + ⋯
L(s)  = 1  + (−0.496 − 0.859i)2-s + (0.00781 − 0.0135i)4-s + (0.176 − 0.306i)5-s + (0.0600 + 0.104i)7-s − 1.00·8-s − 0.350·10-s + (0.585 + 1.01i)11-s + (0.354 − 0.614i)13-s + (0.0595 − 0.103i)14-s + (0.492 + 0.852i)16-s + 0.488·17-s − 1.05·19-s + (−0.00276 − 0.00478i)20-s + (0.581 − 1.00i)22-s + (−0.894 + 1.54i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.939 + 0.342i$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ 0.939 + 0.342i)\)

Particular Values

\(L(5)\) \(\approx\) \(1.41024 - 0.248663i\)
\(L(\frac12)\) \(\approx\) \(1.41024 - 0.248663i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (11.2 + 19.4i)T + (-256 + 443. i)T^{2} \)
5 \( 1 + (-246. + 427. i)T + (-9.76e5 - 1.69e6i)T^{2} \)
7 \( 1 + (-381.5 - 660. i)T + (-2.01e7 + 3.49e7i)T^{2} \)
11 \( 1 + (-2.84e4 - 4.92e4i)T + (-1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + (-3.65e4 + 6.32e4i)T + (-5.30e9 - 9.18e9i)T^{2} \)
17 \( 1 - 1.68e5T + 1.18e11T^{2} \)
19 \( 1 + 5.98e5T + 3.22e11T^{2} \)
23 \( 1 + (1.20e6 - 2.07e6i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + (-2.32e6 - 4.03e6i)T + (-7.25e12 + 1.25e13i)T^{2} \)
31 \( 1 + (-9.12e5 + 1.57e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 - 1.42e7T + 1.29e14T^{2} \)
41 \( 1 + (1.49e7 - 2.58e7i)T + (-1.63e14 - 2.83e14i)T^{2} \)
43 \( 1 + (3.87e6 + 6.71e6i)T + (-2.51e14 + 4.35e14i)T^{2} \)
47 \( 1 + (1.54e7 + 2.68e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 - 9.90e6T + 3.29e15T^{2} \)
59 \( 1 + (-6.26e7 + 1.08e8i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-7.63e7 - 1.32e8i)T + (-5.84e15 + 1.01e16i)T^{2} \)
67 \( 1 + (-1.60e8 + 2.77e8i)T + (-1.36e16 - 2.35e16i)T^{2} \)
71 \( 1 - 1.09e8T + 4.58e16T^{2} \)
73 \( 1 - 6.64e7T + 5.88e16T^{2} \)
79 \( 1 + (-5.76e7 - 9.99e7i)T + (-5.99e16 + 1.03e17i)T^{2} \)
83 \( 1 + (-3.07e8 - 5.32e8i)T + (-9.34e16 + 1.61e17i)T^{2} \)
89 \( 1 + 3.37e8T + 3.50e17T^{2} \)
97 \( 1 + (-1.17e8 - 2.03e8i)T + (-3.80e17 + 6.58e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.22064613347291396489640069762, −11.30978175983721714849694218741, −10.14393828833266518764824078151, −9.423126151297429827430649882872, −8.216317923931249081139654581912, −6.60339080968757616424987224872, −5.28381883090985909934251568145, −3.57630027374152330617356071093, −2.04184661868414367835218443316, −1.05841402512090494593719708471, 0.55760579713395727671144166622, 2.54930247512194649086234564507, 4.08409916440918738605021116212, 6.08706925241758656838181449289, 6.63547446718084765628982677954, 8.133863032976531301380379137263, 8.804389538192932872579541036140, 10.20494195402749378137549416892, 11.45401184559618849342034572478, 12.48910305881872107209700702478

Graph of the $Z$-function along the critical line