L(s) = 1 | + (64 − 110. i)4-s + (−881.5 − 1.52e3i)7-s + (−6.30e3 + 1.09e4i)13-s + (−8.19e3 − 1.41e4i)16-s + 1.43e4·19-s + (3.90e4 + 6.76e4i)25-s − 2.25e5·28-s + (−8.94e4 + 1.54e5i)31-s − 6.15e5·37-s + (−5.17e5 − 8.96e5i)43-s + (−1.14e6 + 1.97e6i)49-s + (8.06e5 + 1.39e6i)52-s + (−7.68e5 − 1.33e6i)61-s − 2.09e6·64-s + (2.02e6 − 3.51e6i)67-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s + (−0.971 − 1.68i)7-s + (−0.795 + 1.37i)13-s + (−0.499 − 0.866i)16-s + 0.480·19-s + (0.5 + 0.866i)25-s − 1.94·28-s + (−0.539 + 0.934i)31-s − 1.99·37-s + (−0.992 − 1.71i)43-s + (−1.38 + 2.40i)49-s + (0.795 + 1.37i)52-s + (−0.433 − 0.750i)61-s − 0.999·64-s + (0.824 − 1.42i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.0976825 + 0.553985i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0976825 + 0.553985i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-64 + 110. i)T^{2} \) |
| 5 | \( 1 + (-3.90e4 - 6.76e4i)T^{2} \) |
| 7 | \( 1 + (881.5 + 1.52e3i)T + (-4.11e5 + 7.13e5i)T^{2} \) |
| 11 | \( 1 + (-9.74e6 + 1.68e7i)T^{2} \) |
| 13 | \( 1 + (6.30e3 - 1.09e4i)T + (-3.13e7 - 5.43e7i)T^{2} \) |
| 17 | \( 1 + 4.10e8T^{2} \) |
| 19 | \( 1 - 1.43e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + (-1.70e9 - 2.94e9i)T^{2} \) |
| 29 | \( 1 + (-8.62e9 + 1.49e10i)T^{2} \) |
| 31 | \( 1 + (8.94e4 - 1.54e5i)T + (-1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + 6.15e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + (-9.73e10 - 1.68e11i)T^{2} \) |
| 43 | \( 1 + (5.17e5 + 8.96e5i)T + (-1.35e11 + 2.35e11i)T^{2} \) |
| 47 | \( 1 + (-2.53e11 + 4.38e11i)T^{2} \) |
| 53 | \( 1 + 1.17e12T^{2} \) |
| 59 | \( 1 + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (7.68e5 + 1.33e6i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (-2.02e6 + 3.51e6i)T + (-3.03e12 - 5.24e12i)T^{2} \) |
| 71 | \( 1 + 9.09e12T^{2} \) |
| 73 | \( 1 - 1.23e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + (-2.12e6 - 3.67e6i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + (-1.35e13 + 2.35e13i)T^{2} \) |
| 89 | \( 1 + 4.42e13T^{2} \) |
| 97 | \( 1 + (2.63e6 + 4.56e6i)T + (-4.03e13 + 6.99e13i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28297793347449692626001099366, −10.99544463407257033313709632357, −10.15919742384712090213539427459, −9.285611456906382501216314120083, −7.12847392268299697358099191621, −6.77679090591027005771582096318, −5.02386681361590739073254449294, −3.51989589663641092076620618782, −1.61552683602046791291982804596, −0.17302871399128428759465496997,
2.43152442024036846578739891675, 3.25103718282067086768544514242, 5.34867335346696535616141597916, 6.53824844798646355358145685476, 7.901588492854894173373305963443, 8.950244195216344250981714363624, 10.15621396212794201208617892235, 11.69778709026514979993280761315, 12.44347144753196451718539013977, 13.07857520438373923668323509377