L(s) = 1 | + (−2.59 − 1.5i)2-s + (−3.5 − 6.06i)4-s + (28.5 − 16.5i)5-s + (9.5 − 16.4i)7-s + 69i·8-s − 99·10-s + (106. + 61.5i)11-s + (−151 − 261. i)13-s + (−49.3 + 28.5i)14-s + (47.5 − 82.2i)16-s − 414i·17-s − 304·19-s + (−200. − 115. i)20-s + (−184.5 − 319. i)22-s + (−259. + 150i)23-s + ⋯ |
L(s) = 1 | + (−0.649 − 0.375i)2-s + (−0.218 − 0.378i)4-s + (1.14 − 0.660i)5-s + (0.193 − 0.335i)7-s + 1.07i·8-s − 0.989·10-s + (0.880 + 0.508i)11-s + (−0.893 − 1.54i)13-s + (−0.251 + 0.145i)14-s + (0.185 − 0.321i)16-s − 1.43i·17-s − 0.842·19-s + (−0.500 − 0.288i)20-s + (−0.381 − 0.660i)22-s + (−0.491 + 0.283i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.481412 - 1.03239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.481412 - 1.03239i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (2.59 + 1.5i)T + (8 + 13.8i)T^{2} \) |
| 5 | \( 1 + (-28.5 + 16.5i)T + (312.5 - 541. i)T^{2} \) |
| 7 | \( 1 + (-9.5 + 16.4i)T + (-1.20e3 - 2.07e3i)T^{2} \) |
| 11 | \( 1 + (-106. - 61.5i)T + (7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 + (151 + 261. i)T + (-1.42e4 + 2.47e4i)T^{2} \) |
| 17 | \( 1 + 414iT - 8.35e4T^{2} \) |
| 19 | \( 1 + 304T + 1.30e5T^{2} \) |
| 23 | \( 1 + (259. - 150i)T + (1.39e5 - 2.42e5i)T^{2} \) |
| 29 | \( 1 + (587. + 339i)T + (3.53e5 + 6.12e5i)T^{2} \) |
| 31 | \( 1 + (119.5 + 206. i)T + (-4.61e5 + 7.99e5i)T^{2} \) |
| 37 | \( 1 - 740T + 1.87e6T^{2} \) |
| 41 | \( 1 + (197. - 114i)T + (1.41e6 - 2.44e6i)T^{2} \) |
| 43 | \( 1 + (-491 + 850. i)T + (-1.70e6 - 2.96e6i)T^{2} \) |
| 47 | \( 1 + (-1.87e3 - 1.08e3i)T + (2.43e6 + 4.22e6i)T^{2} \) |
| 53 | \( 1 - 1.59e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + (-2.53e3 + 1.46e3i)T + (6.05e6 - 1.04e7i)T^{2} \) |
| 61 | \( 1 + (-158 + 273. i)T + (-6.92e6 - 1.19e7i)T^{2} \) |
| 67 | \( 1 + (2.31e3 + 4.00e3i)T + (-1.00e7 + 1.74e7i)T^{2} \) |
| 71 | \( 1 + 1.81e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 3.03e3T + 2.83e7T^{2} \) |
| 79 | \( 1 + (-5.22e3 + 9.04e3i)T + (-1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 + (-1.09e4 - 6.31e3i)T + (2.37e7 + 4.11e7i)T^{2} \) |
| 89 | \( 1 - 7.00e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-3.25e3 + 5.64e3i)T + (-4.42e7 - 7.66e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.28551123819735391817751355241, −12.09258662254049635223493118360, −10.68289035974971745726085979926, −9.719078248340046644207120231587, −9.158161750367782391568243143488, −7.66985850268917462170401229173, −5.84052999462538836234084606859, −4.79466649177512772234651415063, −2.18592509392802626741326275278, −0.71674293012384824469758277552,
2.00462087242337547024961091671, 4.04100070177196943682835271990, 6.11084098408311875549062108965, 6.96455927262698838135621583620, 8.556770352453322355553723334713, 9.369547311266359727078860977385, 10.39514276196393066942747603436, 11.83310937028406139582991251235, 13.01326397834502792306415074987, 14.17922809712302988425564836564