Properties

Label 2-3e4-81.7-c1-0-6
Degree $2$
Conductor $81$
Sign $0.905 + 0.424i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.470 + 0.631i)2-s + (−1.10 − 1.32i)3-s + (0.395 − 1.32i)4-s + (2.32 − 1.53i)5-s + (0.318 − 1.32i)6-s + (−3.41 + 3.62i)7-s + (2.50 − 0.910i)8-s + (−0.537 + 2.95i)9-s + (2.06 + 0.750i)10-s + (1.55 − 0.779i)11-s + (−2.19 + 0.940i)12-s + (0.859 + 1.99i)13-s + (−3.89 − 0.455i)14-s + (−4.61 − 1.39i)15-s + (−0.554 − 0.364i)16-s + (−3.39 + 2.84i)17-s + ⋯
L(s)  = 1  + (0.332 + 0.446i)2-s + (−0.640 − 0.767i)3-s + (0.197 − 0.660i)4-s + (1.04 − 0.684i)5-s + (0.129 − 0.541i)6-s + (−1.29 + 1.36i)7-s + (0.884 − 0.321i)8-s + (−0.179 + 0.983i)9-s + (0.651 + 0.237i)10-s + (0.468 − 0.235i)11-s + (−0.634 + 0.271i)12-s + (0.238 + 0.552i)13-s + (−1.04 − 0.121i)14-s + (−1.19 − 0.360i)15-s + (−0.138 − 0.0911i)16-s + (−0.823 + 0.690i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 + 0.424i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.905 + 0.424i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.905 + 0.424i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.905 + 0.424i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.00987 - 0.224772i\)
\(L(\frac12)\) \(\approx\) \(1.00987 - 0.224772i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.10 + 1.32i)T \)
good2 \( 1 + (-0.470 - 0.631i)T + (-0.573 + 1.91i)T^{2} \)
5 \( 1 + (-2.32 + 1.53i)T + (1.98 - 4.59i)T^{2} \)
7 \( 1 + (3.41 - 3.62i)T + (-0.407 - 6.98i)T^{2} \)
11 \( 1 + (-1.55 + 0.779i)T + (6.56 - 8.82i)T^{2} \)
13 \( 1 + (-0.859 - 1.99i)T + (-8.92 + 9.45i)T^{2} \)
17 \( 1 + (3.39 - 2.84i)T + (2.95 - 16.7i)T^{2} \)
19 \( 1 + (1.63 + 1.37i)T + (3.29 + 18.7i)T^{2} \)
23 \( 1 + (-0.465 - 0.493i)T + (-1.33 + 22.9i)T^{2} \)
29 \( 1 + (-5.71 + 0.668i)T + (28.2 - 6.68i)T^{2} \)
31 \( 1 + (5.72 - 1.35i)T + (27.7 - 13.9i)T^{2} \)
37 \( 1 + (-0.131 - 0.747i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + (-0.0737 + 0.0990i)T + (-11.7 - 39.2i)T^{2} \)
43 \( 1 + (0.148 - 2.54i)T + (-42.7 - 4.99i)T^{2} \)
47 \( 1 + (-1.65 - 0.391i)T + (42.0 + 21.0i)T^{2} \)
53 \( 1 + (5.02 + 8.69i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (10.3 + 5.21i)T + (35.2 + 47.3i)T^{2} \)
61 \( 1 + (2.27 + 7.58i)T + (-50.9 + 33.5i)T^{2} \)
67 \( 1 + (-0.462 - 0.0540i)T + (65.1 + 15.4i)T^{2} \)
71 \( 1 + (-11.4 - 4.17i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (2.01 - 0.732i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-4.18 - 5.62i)T + (-22.6 + 75.6i)T^{2} \)
83 \( 1 + (1.97 + 2.65i)T + (-23.8 + 79.5i)T^{2} \)
89 \( 1 + (4.72 - 1.71i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-6.27 - 4.12i)T + (38.4 + 89.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08490272624711029381037393186, −13.14176340449461180238428012468, −12.51696827023224799632617551314, −11.14900048331360980102139326239, −9.732673311041363893839305098217, −8.780739740836086362857167110068, −6.53118194856908351262457286282, −6.19117784704273531809153657737, −5.12758723213643698044715777103, −1.96162584811106564359673526296, 3.09878609196109257559462121005, 4.28971000591971014807319959503, 6.23413646773448018757056195562, 7.10657487481799078710613704057, 9.324518027983059370893149376167, 10.38288920989507422787735279449, 10.86886455369434261241571860001, 12.33233462941760843870831494148, 13.33717688149255042428254495813, 14.12820440540439237880256385490

Graph of the $Z$-function along the critical line