L(s) = 1 | + (0.470 + 0.631i)2-s + (−1.10 − 1.32i)3-s + (0.395 − 1.32i)4-s + (2.32 − 1.53i)5-s + (0.318 − 1.32i)6-s + (−3.41 + 3.62i)7-s + (2.50 − 0.910i)8-s + (−0.537 + 2.95i)9-s + (2.06 + 0.750i)10-s + (1.55 − 0.779i)11-s + (−2.19 + 0.940i)12-s + (0.859 + 1.99i)13-s + (−3.89 − 0.455i)14-s + (−4.61 − 1.39i)15-s + (−0.554 − 0.364i)16-s + (−3.39 + 2.84i)17-s + ⋯ |
L(s) = 1 | + (0.332 + 0.446i)2-s + (−0.640 − 0.767i)3-s + (0.197 − 0.660i)4-s + (1.04 − 0.684i)5-s + (0.129 − 0.541i)6-s + (−1.29 + 1.36i)7-s + (0.884 − 0.321i)8-s + (−0.179 + 0.983i)9-s + (0.651 + 0.237i)10-s + (0.468 − 0.235i)11-s + (−0.634 + 0.271i)12-s + (0.238 + 0.552i)13-s + (−1.04 − 0.121i)14-s + (−1.19 − 0.360i)15-s + (−0.138 − 0.0911i)16-s + (−0.823 + 0.690i)17-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.905+0.424i)Λ(2−s)
Λ(s)=(=(81s/2ΓC(s+1/2)L(s)(0.905+0.424i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.905+0.424i
|
Analytic conductor: |
0.646788 |
Root analytic conductor: |
0.804231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :1/2), 0.905+0.424i)
|
Particular Values
L(1) |
≈ |
1.00987−0.224772i |
L(21) |
≈ |
1.00987−0.224772i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.10+1.32i)T |
good | 2 | 1+(−0.470−0.631i)T+(−0.573+1.91i)T2 |
| 5 | 1+(−2.32+1.53i)T+(1.98−4.59i)T2 |
| 7 | 1+(3.41−3.62i)T+(−0.407−6.98i)T2 |
| 11 | 1+(−1.55+0.779i)T+(6.56−8.82i)T2 |
| 13 | 1+(−0.859−1.99i)T+(−8.92+9.45i)T2 |
| 17 | 1+(3.39−2.84i)T+(2.95−16.7i)T2 |
| 19 | 1+(1.63+1.37i)T+(3.29+18.7i)T2 |
| 23 | 1+(−0.465−0.493i)T+(−1.33+22.9i)T2 |
| 29 | 1+(−5.71+0.668i)T+(28.2−6.68i)T2 |
| 31 | 1+(5.72−1.35i)T+(27.7−13.9i)T2 |
| 37 | 1+(−0.131−0.747i)T+(−34.7+12.6i)T2 |
| 41 | 1+(−0.0737+0.0990i)T+(−11.7−39.2i)T2 |
| 43 | 1+(0.148−2.54i)T+(−42.7−4.99i)T2 |
| 47 | 1+(−1.65−0.391i)T+(42.0+21.0i)T2 |
| 53 | 1+(5.02+8.69i)T+(−26.5+45.8i)T2 |
| 59 | 1+(10.3+5.21i)T+(35.2+47.3i)T2 |
| 61 | 1+(2.27+7.58i)T+(−50.9+33.5i)T2 |
| 67 | 1+(−0.462−0.0540i)T+(65.1+15.4i)T2 |
| 71 | 1+(−11.4−4.17i)T+(54.3+45.6i)T2 |
| 73 | 1+(2.01−0.732i)T+(55.9−46.9i)T2 |
| 79 | 1+(−4.18−5.62i)T+(−22.6+75.6i)T2 |
| 83 | 1+(1.97+2.65i)T+(−23.8+79.5i)T2 |
| 89 | 1+(4.72−1.71i)T+(68.1−57.2i)T2 |
| 97 | 1+(−6.27−4.12i)T+(38.4+89.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.08490272624711029381037393186, −13.14176340449461180238428012468, −12.51696827023224799632617551314, −11.14900048331360980102139326239, −9.732673311041363893839305098217, −8.780739740836086362857167110068, −6.53118194856908351262457286282, −6.19117784704273531809153657737, −5.12758723213643698044715777103, −1.96162584811106564359673526296,
3.09878609196109257559462121005, 4.28971000591971014807319959503, 6.23413646773448018757056195562, 7.10657487481799078710613704057, 9.324518027983059370893149376167, 10.38288920989507422787735279449, 10.86886455369434261241571860001, 12.33233462941760843870831494148, 13.33717688149255042428254495813, 14.12820440540439237880256385490