Properties

Label 2-3e4-81.34-c1-0-7
Degree $2$
Conductor $81$
Sign $-0.370 + 0.928i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.868 − 2.01i)2-s + (−0.540 − 1.64i)3-s + (−1.92 − 2.04i)4-s + (0.209 + 3.59i)5-s + (−3.78 − 0.341i)6-s + (1.42 + 0.337i)7-s + (−1.66 + 0.606i)8-s + (−2.41 + 1.77i)9-s + (7.41 + 2.69i)10-s + (−3.76 − 2.47i)11-s + (−2.32 + 4.27i)12-s + (3.05 + 0.356i)13-s + (1.91 − 2.57i)14-s + (5.80 − 2.28i)15-s + (0.100 − 1.72i)16-s + (−2.57 + 2.15i)17-s + ⋯
L(s)  = 1  + (0.614 − 1.42i)2-s + (−0.311 − 0.950i)3-s + (−0.963 − 1.02i)4-s + (0.0936 + 1.60i)5-s + (−1.54 − 0.139i)6-s + (0.537 + 0.127i)7-s + (−0.589 + 0.214i)8-s + (−0.805 + 0.592i)9-s + (2.34 + 0.853i)10-s + (−1.13 − 0.747i)11-s + (−0.669 + 1.23i)12-s + (0.846 + 0.0989i)13-s + (0.511 − 0.687i)14-s + (1.49 − 0.590i)15-s + (0.0251 − 0.431i)16-s + (−0.624 + 0.523i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.370 + 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.370 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-0.370 + 0.928i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (34, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ -0.370 + 0.928i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.646033 - 0.953428i\)
\(L(\frac12)\) \(\approx\) \(0.646033 - 0.953428i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.540 + 1.64i)T \)
good2 \( 1 + (-0.868 + 2.01i)T + (-1.37 - 1.45i)T^{2} \)
5 \( 1 + (-0.209 - 3.59i)T + (-4.96 + 0.580i)T^{2} \)
7 \( 1 + (-1.42 - 0.337i)T + (6.25 + 3.14i)T^{2} \)
11 \( 1 + (3.76 + 2.47i)T + (4.35 + 10.1i)T^{2} \)
13 \( 1 + (-3.05 - 0.356i)T + (12.6 + 2.99i)T^{2} \)
17 \( 1 + (2.57 - 2.15i)T + (2.95 - 16.7i)T^{2} \)
19 \( 1 + (-0.625 - 0.525i)T + (3.29 + 18.7i)T^{2} \)
23 \( 1 + (2.81 - 0.666i)T + (20.5 - 10.3i)T^{2} \)
29 \( 1 + (-5.35 - 7.19i)T + (-8.31 + 27.7i)T^{2} \)
31 \( 1 + (0.183 - 0.611i)T + (-25.9 - 17.0i)T^{2} \)
37 \( 1 + (0.652 + 3.69i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + (3.86 + 8.95i)T + (-28.1 + 29.8i)T^{2} \)
43 \( 1 + (-0.0539 + 0.0271i)T + (25.6 - 34.4i)T^{2} \)
47 \( 1 + (0.628 + 2.09i)T + (-39.2 + 25.8i)T^{2} \)
53 \( 1 + (0.875 + 1.51i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-8.24 + 5.42i)T + (23.3 - 54.1i)T^{2} \)
61 \( 1 + (-1.91 + 2.03i)T + (-3.54 - 60.8i)T^{2} \)
67 \( 1 + (0.188 - 0.253i)T + (-19.2 - 64.1i)T^{2} \)
71 \( 1 + (-0.0557 - 0.0202i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (1.24 - 0.453i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (3.61 - 8.38i)T + (-54.2 - 57.4i)T^{2} \)
83 \( 1 + (5.47 - 12.6i)T + (-56.9 - 60.3i)T^{2} \)
89 \( 1 + (-13.7 + 4.99i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (0.652 - 11.1i)T + (-96.3 - 11.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80471582231396735260771939957, −12.91361822955400440367583699063, −11.70482868383554949987903889441, −10.88976043218969983617622157092, −10.49979951050587432909018015551, −8.280608061985726388230547328385, −6.85823170621668810931313692229, −5.49971119254136021408421238421, −3.34740554704191043553843569533, −2.13035887544322534160090050264, 4.47398292548583394756206948287, 4.92644543067609081081691176828, 6.07020938375161072283508321822, 7.933256562885972396040541332397, 8.717629453070793590836129873177, 10.07952370974394180697727713656, 11.63287870018463883976019650879, 12.97513060974248021175127608879, 13.73905449318025526083754918015, 15.06598590445548199946746479223

Graph of the $Z$-function along the critical line