Properties

Label 2-3e4-81.25-c1-0-6
Degree $2$
Conductor $81$
Sign $0.761 + 0.647i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.744 − 0.373i)2-s + (0.703 − 1.58i)3-s + (−0.779 + 1.04i)4-s + (0.345 − 1.15i)5-s + (−0.0676 − 1.44i)6-s + (−0.520 + 1.20i)7-s + (−0.478 + 2.71i)8-s + (−2.00 − 2.22i)9-s + (−0.174 − 0.989i)10-s + (2.11 + 0.501i)11-s + (1.10 + 1.97i)12-s + (−3.80 + 2.50i)13-s + (0.0636 + 1.09i)14-s + (−1.58 − 1.36i)15-s + (−0.0912 − 0.304i)16-s + (3.54 + 1.28i)17-s + ⋯
L(s)  = 1  + (0.526 − 0.264i)2-s + (0.406 − 0.913i)3-s + (−0.389 + 0.523i)4-s + (0.154 − 0.516i)5-s + (−0.0276 − 0.588i)6-s + (−0.196 + 0.456i)7-s + (−0.169 + 0.958i)8-s + (−0.669 − 0.742i)9-s + (−0.0551 − 0.312i)10-s + (0.637 + 0.151i)11-s + (0.320 + 0.569i)12-s + (−1.05 + 0.694i)13-s + (0.0170 + 0.292i)14-s + (−0.409 − 0.351i)15-s + (−0.0228 − 0.0761i)16-s + (0.859 + 0.312i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.761 + 0.647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.761 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.761 + 0.647i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.761 + 0.647i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.13740 - 0.418027i\)
\(L(\frac12)\) \(\approx\) \(1.13740 - 0.418027i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.703 + 1.58i)T \)
good2 \( 1 + (-0.744 + 0.373i)T + (1.19 - 1.60i)T^{2} \)
5 \( 1 + (-0.345 + 1.15i)T + (-4.17 - 2.74i)T^{2} \)
7 \( 1 + (0.520 - 1.20i)T + (-4.80 - 5.09i)T^{2} \)
11 \( 1 + (-2.11 - 0.501i)T + (9.82 + 4.93i)T^{2} \)
13 \( 1 + (3.80 - 2.50i)T + (5.14 - 11.9i)T^{2} \)
17 \( 1 + (-3.54 - 1.28i)T + (13.0 + 10.9i)T^{2} \)
19 \( 1 + (2.50 - 0.911i)T + (14.5 - 12.2i)T^{2} \)
23 \( 1 + (2.38 + 5.53i)T + (-15.7 + 16.7i)T^{2} \)
29 \( 1 + (-0.241 + 4.15i)T + (-28.8 - 3.36i)T^{2} \)
31 \( 1 + (7.40 + 0.865i)T + (30.1 + 7.14i)T^{2} \)
37 \( 1 + (-7.47 + 6.27i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + (-5.17 - 2.59i)T + (24.4 + 32.8i)T^{2} \)
43 \( 1 + (-3.46 + 3.67i)T + (-2.50 - 42.9i)T^{2} \)
47 \( 1 + (-2.97 + 0.348i)T + (45.7 - 10.8i)T^{2} \)
53 \( 1 + (6.22 + 10.7i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (10.6 - 2.51i)T + (52.7 - 26.4i)T^{2} \)
61 \( 1 + (-7.04 - 9.45i)T + (-17.4 + 58.4i)T^{2} \)
67 \( 1 + (-0.0482 - 0.828i)T + (-66.5 + 7.77i)T^{2} \)
71 \( 1 + (-1.25 - 7.14i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (1.41 - 7.99i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (10.2 - 5.16i)T + (47.1 - 63.3i)T^{2} \)
83 \( 1 + (4.26 - 2.14i)T + (49.5 - 66.5i)T^{2} \)
89 \( 1 + (-0.578 + 3.28i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (0.390 + 1.30i)T + (-81.0 + 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28152636617441902296481287398, −12.73991577883053082202673608077, −12.59305741633429464623828691485, −11.55078706773173010556821584477, −9.449623837623398221116256944433, −8.600371352579214778816855464459, −7.39741712352485313953142164376, −5.82944469430959558126534426016, −4.16314192954395286162154840234, −2.39507635433655029372911158548, 3.31757211898587386784856436161, 4.67442667456820543059632374447, 5.91812524041052484590700227905, 7.48250397780019784360537381140, 9.225182394302638019747765128797, 9.996849513610254956064548183517, 10.91127604426353929450572479093, 12.59344630341229735809923326573, 13.88519213860512241837981232303, 14.49798531887954687776046986410

Graph of the $Z$-function along the critical line