Properties

Label 2-3e4-81.22-c1-0-5
Degree $2$
Conductor $81$
Sign $0.447 + 0.894i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.802 − 0.850i)2-s + (1.71 − 0.242i)3-s + (0.0367 − 0.631i)4-s + (−0.890 + 0.104i)5-s + (−1.58 − 1.26i)6-s + (0.770 + 0.386i)7-s + (−2.35 + 1.97i)8-s + (2.88 − 0.830i)9-s + (0.803 + 0.674i)10-s + (−0.624 − 1.44i)11-s + (−0.0898 − 1.09i)12-s + (−0.701 − 0.166i)13-s + (−0.288 − 0.965i)14-s + (−1.50 + 0.394i)15-s + (2.31 + 0.271i)16-s + (−0.865 + 4.90i)17-s + ⋯
L(s)  = 1  + (−0.567 − 0.601i)2-s + (0.990 − 0.139i)3-s + (0.0183 − 0.315i)4-s + (−0.398 + 0.0465i)5-s + (−0.645 − 0.516i)6-s + (0.291 + 0.146i)7-s + (−0.833 + 0.699i)8-s + (0.960 − 0.276i)9-s + (0.254 + 0.213i)10-s + (−0.188 − 0.436i)11-s + (−0.0259 − 0.315i)12-s + (−0.194 − 0.0461i)13-s + (−0.0772 − 0.257i)14-s + (−0.387 + 0.101i)15-s + (0.579 + 0.0677i)16-s + (−0.209 + 1.19i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.778946 - 0.481207i\)
\(L(\frac12)\) \(\approx\) \(0.778946 - 0.481207i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.71 + 0.242i)T \)
good2 \( 1 + (0.802 + 0.850i)T + (-0.116 + 1.99i)T^{2} \)
5 \( 1 + (0.890 - 0.104i)T + (4.86 - 1.15i)T^{2} \)
7 \( 1 + (-0.770 - 0.386i)T + (4.18 + 5.61i)T^{2} \)
11 \( 1 + (0.624 + 1.44i)T + (-7.54 + 8.00i)T^{2} \)
13 \( 1 + (0.701 + 0.166i)T + (11.6 + 5.83i)T^{2} \)
17 \( 1 + (0.865 - 4.90i)T + (-15.9 - 5.81i)T^{2} \)
19 \( 1 + (-1.32 - 7.49i)T + (-17.8 + 6.49i)T^{2} \)
23 \( 1 + (-1.78 + 0.894i)T + (13.7 - 18.4i)T^{2} \)
29 \( 1 + (-0.676 + 2.25i)T + (-24.2 - 15.9i)T^{2} \)
31 \( 1 + (7.93 + 5.22i)T + (12.2 + 28.4i)T^{2} \)
37 \( 1 + (-0.249 + 0.0907i)T + (28.3 - 23.7i)T^{2} \)
41 \( 1 + (-6.68 + 7.08i)T + (-2.38 - 40.9i)T^{2} \)
43 \( 1 + (-1.78 + 2.39i)T + (-12.3 - 41.1i)T^{2} \)
47 \( 1 + (6.28 - 4.13i)T + (18.6 - 43.1i)T^{2} \)
53 \( 1 + (-5.30 + 9.19i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (3.55 - 8.24i)T + (-40.4 - 42.9i)T^{2} \)
61 \( 1 + (0.534 + 9.17i)T + (-60.5 + 7.08i)T^{2} \)
67 \( 1 + (-3.28 - 10.9i)T + (-55.9 + 36.8i)T^{2} \)
71 \( 1 + (7.34 + 6.16i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (4.91 - 4.12i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (1.46 + 1.54i)T + (-4.59 + 78.8i)T^{2} \)
83 \( 1 + (1.68 + 1.79i)T + (-4.82 + 82.8i)T^{2} \)
89 \( 1 + (-6.94 + 5.82i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-8.70 - 1.01i)T + (94.3 + 22.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44044990137884729392788972641, −13.05276146281357091037523235423, −11.89632243349865987533275428363, −10.70237996672007368053370849508, −9.728600514302033057138475454732, −8.604082868982937734252231485785, −7.73289062084129755933803044433, −5.85215514932007760792429153259, −3.72540332352911475003387811819, −1.94464658566631468007940384113, 2.98079443159265985579104046154, 4.63336238758758999119391947493, 7.05882778511601253849494020212, 7.64108265137552566190831688340, 8.876873377869720238661417512089, 9.584407332501877857779741874508, 11.24698681967509003495233958443, 12.57942349655429478464577111610, 13.59859722774346524014179219963, 14.80943658468000148219999525363

Graph of the $Z$-function along the critical line