Properties

Label 2-3e4-81.22-c1-0-3
Degree $2$
Conductor $81$
Sign $0.456 - 0.889i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.71 + 1.81i)2-s + (−1.10 − 1.33i)3-s + (−0.245 + 4.21i)4-s + (1.39 − 0.163i)5-s + (0.531 − 4.28i)6-s + (−2.85 − 1.43i)7-s + (−4.25 + 3.56i)8-s + (−0.561 + 2.94i)9-s + (2.69 + 2.25i)10-s + (−1.87 − 4.34i)11-s + (5.90 − 4.32i)12-s + (2.07 + 0.491i)13-s + (−2.28 − 7.62i)14-s + (−1.76 − 1.68i)15-s + (−5.36 − 0.627i)16-s + (0.520 − 2.95i)17-s + ⋯
L(s)  = 1  + (1.21 + 1.28i)2-s + (−0.637 − 0.770i)3-s + (−0.122 + 2.10i)4-s + (0.625 − 0.0730i)5-s + (0.216 − 1.75i)6-s + (−1.07 − 0.541i)7-s + (−1.50 + 1.26i)8-s + (−0.187 + 0.982i)9-s + (0.850 + 0.713i)10-s + (−0.565 − 1.31i)11-s + (1.70 − 1.24i)12-s + (0.575 + 0.136i)13-s + (−0.610 − 2.03i)14-s + (−0.454 − 0.435i)15-s + (−1.34 − 0.156i)16-s + (0.126 − 0.715i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.456 - 0.889i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.456 - 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.456 - 0.889i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.456 - 0.889i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.16737 + 0.713530i\)
\(L(\frac12)\) \(\approx\) \(1.16737 + 0.713530i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.10 + 1.33i)T \)
good2 \( 1 + (-1.71 - 1.81i)T + (-0.116 + 1.99i)T^{2} \)
5 \( 1 + (-1.39 + 0.163i)T + (4.86 - 1.15i)T^{2} \)
7 \( 1 + (2.85 + 1.43i)T + (4.18 + 5.61i)T^{2} \)
11 \( 1 + (1.87 + 4.34i)T + (-7.54 + 8.00i)T^{2} \)
13 \( 1 + (-2.07 - 0.491i)T + (11.6 + 5.83i)T^{2} \)
17 \( 1 + (-0.520 + 2.95i)T + (-15.9 - 5.81i)T^{2} \)
19 \( 1 + (-1.23 - 6.99i)T + (-17.8 + 6.49i)T^{2} \)
23 \( 1 + (2.70 - 1.35i)T + (13.7 - 18.4i)T^{2} \)
29 \( 1 + (0.631 - 2.10i)T + (-24.2 - 15.9i)T^{2} \)
31 \( 1 + (-3.14 - 2.06i)T + (12.2 + 28.4i)T^{2} \)
37 \( 1 + (6.31 - 2.29i)T + (28.3 - 23.7i)T^{2} \)
41 \( 1 + (-2.90 + 3.08i)T + (-2.38 - 40.9i)T^{2} \)
43 \( 1 + (-0.474 + 0.636i)T + (-12.3 - 41.1i)T^{2} \)
47 \( 1 + (-4.83 + 3.17i)T + (18.6 - 43.1i)T^{2} \)
53 \( 1 + (-4.83 + 8.37i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (0.636 - 1.47i)T + (-40.4 - 42.9i)T^{2} \)
61 \( 1 + (-0.0674 - 1.15i)T + (-60.5 + 7.08i)T^{2} \)
67 \( 1 + (-1.71 - 5.73i)T + (-55.9 + 36.8i)T^{2} \)
71 \( 1 + (-2.74 - 2.30i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (-8.55 + 7.18i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (3.21 + 3.41i)T + (-4.59 + 78.8i)T^{2} \)
83 \( 1 + (10.2 + 10.8i)T + (-4.82 + 82.8i)T^{2} \)
89 \( 1 + (-3.17 + 2.66i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (12.5 + 1.46i)T + (94.3 + 22.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98544343885493143284447963027, −13.72368004233707833286103588710, −12.89969405783094585332028520599, −11.85091882340504487136018290947, −10.26351332649326099063182998062, −8.303448453360563535564442278533, −7.13578468695699420125264122555, −6.07518762030627618367331730304, −5.51489658269140328932307128314, −3.50257998028236303039454351837, 2.61001728858544505879515016203, 4.14306965967275002060377765318, 5.40790265638291002490333542330, 6.36782004037908675797598088669, 9.416177819326844269001826492204, 10.05993030315965215760288713533, 10.98400444949323542686400492333, 12.19559147052195986771462345658, 12.83719982348967830336605379137, 13.83943042211186480092798603016

Graph of the $Z$-function along the critical line