Properties

Label 2-3e4-81.13-c1-0-4
Degree $2$
Conductor $81$
Sign $-0.620 + 0.784i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.89 − 0.949i)2-s + (−0.540 + 1.64i)3-s + (1.47 + 1.98i)4-s + (−1.11 − 3.72i)5-s + (2.58 − 2.59i)6-s + (−1.32 − 3.06i)7-s + (−0.175 − 0.992i)8-s + (−2.41 − 1.77i)9-s + (−1.43 + 8.11i)10-s + (0.736 − 0.174i)11-s + (−4.06 + 1.35i)12-s + (−2.07 − 1.36i)13-s + (−0.410 + 7.04i)14-s + (6.74 + 0.180i)15-s + (0.808 − 2.70i)16-s + (−0.700 + 0.255i)17-s + ⋯
L(s)  = 1  + (−1.33 − 0.671i)2-s + (−0.312 + 0.949i)3-s + (0.739 + 0.993i)4-s + (−0.499 − 1.66i)5-s + (1.05 − 1.06i)6-s + (−0.499 − 1.15i)7-s + (−0.0618 − 0.350i)8-s + (−0.804 − 0.593i)9-s + (−0.452 + 2.56i)10-s + (0.222 − 0.0526i)11-s + (−1.17 + 0.392i)12-s + (−0.576 − 0.378i)13-s + (−0.109 + 1.88i)14-s + (1.74 + 0.0464i)15-s + (0.202 − 0.675i)16-s + (−0.170 + 0.0618i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.620 + 0.784i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.620 + 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-0.620 + 0.784i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ -0.620 + 0.784i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.140214 - 0.289678i\)
\(L(\frac12)\) \(\approx\) \(0.140214 - 0.289678i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.540 - 1.64i)T \)
good2 \( 1 + (1.89 + 0.949i)T + (1.19 + 1.60i)T^{2} \)
5 \( 1 + (1.11 + 3.72i)T + (-4.17 + 2.74i)T^{2} \)
7 \( 1 + (1.32 + 3.06i)T + (-4.80 + 5.09i)T^{2} \)
11 \( 1 + (-0.736 + 0.174i)T + (9.82 - 4.93i)T^{2} \)
13 \( 1 + (2.07 + 1.36i)T + (5.14 + 11.9i)T^{2} \)
17 \( 1 + (0.700 - 0.255i)T + (13.0 - 10.9i)T^{2} \)
19 \( 1 + (-4.21 - 1.53i)T + (14.5 + 12.2i)T^{2} \)
23 \( 1 + (0.905 - 2.09i)T + (-15.7 - 16.7i)T^{2} \)
29 \( 1 + (0.0269 + 0.463i)T + (-28.8 + 3.36i)T^{2} \)
31 \( 1 + (-3.91 + 0.457i)T + (30.1 - 7.14i)T^{2} \)
37 \( 1 + (3.64 + 3.05i)T + (6.42 + 36.4i)T^{2} \)
41 \( 1 + (-4.37 + 2.19i)T + (24.4 - 32.8i)T^{2} \)
43 \( 1 + (4.07 + 4.32i)T + (-2.50 + 42.9i)T^{2} \)
47 \( 1 + (-10.6 - 1.24i)T + (45.7 + 10.8i)T^{2} \)
53 \( 1 + (-5.75 + 9.96i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (4.03 + 0.956i)T + (52.7 + 26.4i)T^{2} \)
61 \( 1 + (-0.159 + 0.214i)T + (-17.4 - 58.4i)T^{2} \)
67 \( 1 + (-0.111 + 1.91i)T + (-66.5 - 7.77i)T^{2} \)
71 \( 1 + (-1.17 + 6.65i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (-1.37 - 7.81i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (-3.85 - 1.93i)T + (47.1 + 63.3i)T^{2} \)
83 \( 1 + (2.27 + 1.14i)T + (49.5 + 66.5i)T^{2} \)
89 \( 1 + (0.935 + 5.30i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (2.72 - 9.08i)T + (-81.0 - 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86960775547112311492034889629, −12.40437001418114739915711363037, −11.58407407845842851487613036513, −10.35667382222186008830559809558, −9.607704378078884904767108955849, −8.737383098361242387688204279802, −7.59332489173502304751349434668, −5.21343699202455759598456494930, −3.82256727106593797596208455724, −0.65313545517410132349936418840, 2.68332026846822166023518666647, 6.07624095970256970652784133149, 6.89366701483700780734480304809, 7.66929643787320153480979542343, 8.952969005443303991695080900355, 10.20335504741230260896978766580, 11.39095742699167537741413250596, 12.27819713129108696983468018758, 13.94327115924738615636121362752, 15.06547416552663174001359251990

Graph of the $Z$-function along the critical line