Properties

Label 2-3e4-3.2-c8-0-5
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.1i·2-s − 325.·4-s − 436. i·5-s + 550.·7-s + 1.68e3i·8-s − 1.05e4·10-s + 2.87e4i·11-s − 7.92e3·13-s − 1.32e4i·14-s − 4.28e4·16-s + 3.52e4i·17-s − 1.98e5·19-s + 1.42e5i·20-s + 6.94e5·22-s + 3.98e5i·23-s + ⋯
L(s)  = 1  − 1.50i·2-s − 1.27·4-s − 0.698i·5-s + 0.229·7-s + 0.410i·8-s − 1.05·10-s + 1.96i·11-s − 0.277·13-s − 0.345i·14-s − 0.653·16-s + 0.422i·17-s − 1.52·19-s + 0.888i·20-s + 2.96·22-s + 1.42i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.975843\)
\(L(\frac12)\) \(\approx\) \(0.975843\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 24.1iT - 256T^{2} \)
5 \( 1 + 436. iT - 3.90e5T^{2} \)
7 \( 1 - 550.T + 5.76e6T^{2} \)
11 \( 1 - 2.87e4iT - 2.14e8T^{2} \)
13 \( 1 + 7.92e3T + 8.15e8T^{2} \)
17 \( 1 - 3.52e4iT - 6.97e9T^{2} \)
19 \( 1 + 1.98e5T + 1.69e10T^{2} \)
23 \( 1 - 3.98e5iT - 7.83e10T^{2} \)
29 \( 1 - 3.65e5iT - 5.00e11T^{2} \)
31 \( 1 - 1.19e6T + 8.52e11T^{2} \)
37 \( 1 + 1.15e6T + 3.51e12T^{2} \)
41 \( 1 + 3.49e6iT - 7.98e12T^{2} \)
43 \( 1 - 8.06e5T + 1.16e13T^{2} \)
47 \( 1 - 3.75e5iT - 2.38e13T^{2} \)
53 \( 1 + 8.04e6iT - 6.22e13T^{2} \)
59 \( 1 - 1.29e7iT - 1.46e14T^{2} \)
61 \( 1 - 2.64e7T + 1.91e14T^{2} \)
67 \( 1 + 1.85e7T + 4.06e14T^{2} \)
71 \( 1 - 2.02e7iT - 6.45e14T^{2} \)
73 \( 1 + 3.11e7T + 8.06e14T^{2} \)
79 \( 1 + 3.57e7T + 1.51e15T^{2} \)
83 \( 1 - 7.32e7iT - 2.25e15T^{2} \)
89 \( 1 - 3.07e7iT - 3.93e15T^{2} \)
97 \( 1 - 1.05e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54801512110854963884387683201, −11.78506768165182029221661732116, −10.49752538043445932126185665442, −9.716204875793924057661713149591, −8.614324805208230389910522815127, −7.01782031732466013214499033259, −4.94098936763936922810550464048, −4.03434380708416168750819311024, −2.28084239613971697004161613113, −1.36388049662529652995797823646, 0.30085181607075040020605247170, 2.79402706822446869477119678101, 4.59812011789456020445483376375, 6.05110141884479586968016199402, 6.67426638535912994692840983175, 8.101070682883867936044174390628, 8.746689049379067279908748018119, 10.50531246411774329622632586099, 11.47564463602374936805783081699, 13.19294563976180685298732478089

Graph of the $Z$-function along the critical line