Properties

Label 2-3e4-3.2-c8-0-23
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.0i·2-s + 155.·4-s − 594. i·5-s + 4.40e3·7-s + 4.12e3i·8-s + 5.95e3·10-s − 3.47e3i·11-s − 1.82e4·13-s + 4.41e4i·14-s − 1.43e3·16-s − 8.66e4i·17-s + 7.61e4·19-s − 9.25e4i·20-s + 3.48e4·22-s − 5.24e5i·23-s + ⋯
L(s)  = 1  + 0.625i·2-s + 0.608·4-s − 0.951i·5-s + 1.83·7-s + 1.00i·8-s + 0.595·10-s − 0.237i·11-s − 0.639·13-s + 1.14i·14-s − 0.0219·16-s − 1.03i·17-s + 0.584·19-s − 0.578i·20-s + 0.148·22-s − 1.87i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.01794\)
\(L(\frac12)\) \(\approx\) \(3.01794\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 10.0iT - 256T^{2} \)
5 \( 1 + 594. iT - 3.90e5T^{2} \)
7 \( 1 - 4.40e3T + 5.76e6T^{2} \)
11 \( 1 + 3.47e3iT - 2.14e8T^{2} \)
13 \( 1 + 1.82e4T + 8.15e8T^{2} \)
17 \( 1 + 8.66e4iT - 6.97e9T^{2} \)
19 \( 1 - 7.61e4T + 1.69e10T^{2} \)
23 \( 1 + 5.24e5iT - 7.83e10T^{2} \)
29 \( 1 - 7.75e5iT - 5.00e11T^{2} \)
31 \( 1 + 9.25e5T + 8.52e11T^{2} \)
37 \( 1 - 2.37e5T + 3.51e12T^{2} \)
41 \( 1 + 5.15e5iT - 7.98e12T^{2} \)
43 \( 1 - 3.95e6T + 1.16e13T^{2} \)
47 \( 1 - 5.32e6iT - 2.38e13T^{2} \)
53 \( 1 + 1.30e7iT - 6.22e13T^{2} \)
59 \( 1 - 1.25e7iT - 1.46e14T^{2} \)
61 \( 1 - 1.18e7T + 1.91e14T^{2} \)
67 \( 1 - 1.35e7T + 4.06e14T^{2} \)
71 \( 1 - 1.33e5iT - 6.45e14T^{2} \)
73 \( 1 - 5.24e7T + 8.06e14T^{2} \)
79 \( 1 + 4.78e7T + 1.51e15T^{2} \)
83 \( 1 + 5.85e7iT - 2.25e15T^{2} \)
89 \( 1 + 4.62e7iT - 3.93e15T^{2} \)
97 \( 1 + 8.82e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56240536412800795661568944957, −11.61490113396439936864533510536, −10.75477461137441403380815673176, −8.935098858714048989839259822645, −8.063774592856295511154944835558, −7.10230145411722164736830188994, −5.37011639998131330909383829471, −4.73430123110603231920620898444, −2.34218704204383783259940322548, −1.01306024883059006585884642418, 1.41278188214716657411420528501, 2.37487306616179628110119600447, 3.88199410887090399882976070893, 5.53136367445432810389645802366, 7.13392133013255365515851429582, 7.910382129713072628070712169899, 9.723571527827451813811409077002, 10.90006266950514998736240883591, 11.34106602879612916972524099901, 12.34763654059015081563097148419

Graph of the $Z$-function along the critical line