Properties

Label 2-3e4-3.2-c4-0-5
Degree $2$
Conductor $81$
Sign $-i$
Analytic cond. $8.37296$
Root an. cond. $2.89360$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.46i·2-s − 3.93·4-s − 16.0i·5-s + 72.4·7-s + 53.8i·8-s + 71.5·10-s + 96.1i·11-s + 153.·13-s + 323. i·14-s − 303.·16-s + 72.7i·17-s − 190.·19-s + 63.1i·20-s − 429.·22-s + 14.4i·23-s + ⋯
L(s)  = 1  + 1.11i·2-s − 0.246·4-s − 0.640i·5-s + 1.47·7-s + 0.841i·8-s + 0.715·10-s + 0.794i·11-s + 0.910·13-s + 1.65i·14-s − 1.18·16-s + 0.251i·17-s − 0.528·19-s + 0.157i·20-s − 0.887·22-s + 0.0273i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-i$
Analytic conductor: \(8.37296\)
Root analytic conductor: \(2.89360\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :2),\ -i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.46299 + 1.46299i\)
\(L(\frac12)\) \(\approx\) \(1.46299 + 1.46299i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 4.46iT - 16T^{2} \)
5 \( 1 + 16.0iT - 625T^{2} \)
7 \( 1 - 72.4T + 2.40e3T^{2} \)
11 \( 1 - 96.1iT - 1.46e4T^{2} \)
13 \( 1 - 153.T + 2.85e4T^{2} \)
17 \( 1 - 72.7iT - 8.35e4T^{2} \)
19 \( 1 + 190.T + 1.30e5T^{2} \)
23 \( 1 - 14.4iT - 2.79e5T^{2} \)
29 \( 1 - 716. iT - 7.07e5T^{2} \)
31 \( 1 + 302.T + 9.23e5T^{2} \)
37 \( 1 - 826.T + 1.87e6T^{2} \)
41 \( 1 + 556. iT - 2.82e6T^{2} \)
43 \( 1 - 892.T + 3.41e6T^{2} \)
47 \( 1 + 3.95e3iT - 4.87e6T^{2} \)
53 \( 1 + 1.96e3iT - 7.89e6T^{2} \)
59 \( 1 + 5.41e3iT - 1.21e7T^{2} \)
61 \( 1 + 1.71e3T + 1.38e7T^{2} \)
67 \( 1 + 4.63e3T + 2.01e7T^{2} \)
71 \( 1 - 6.69e3iT - 2.54e7T^{2} \)
73 \( 1 + 4.82e3T + 2.83e7T^{2} \)
79 \( 1 + 5.72e3T + 3.89e7T^{2} \)
83 \( 1 - 2.83e3iT - 4.74e7T^{2} \)
89 \( 1 + 1.42e4iT - 6.27e7T^{2} \)
97 \( 1 - 7.16e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31795713133113373345754114147, −12.99214974627739936104216215704, −11.68907315089517778252800620056, −10.70878865523055137692631003357, −8.827883265977777542490786002558, −8.137470994090311484445424306620, −6.98037494688114132909101626386, −5.51971611941578251668075768752, −4.52518872983607294374300415728, −1.72580961234895447035865275240, 1.26106192685789711683003144579, 2.78086085694427877982945905453, 4.28962100489138128727435418502, 6.15187988257844698873668249875, 7.70519031243205350615916905811, 8.991135103277246429746485895862, 10.62127534790562639575547721589, 11.05860353522912133533768530556, 11.87744986234880877521269046106, 13.24978549669333978250807485292

Graph of the $Z$-function along the critical line