Properties

Label 2-3e4-27.4-c9-0-3
Degree $2$
Conductor $81$
Sign $-0.489 - 0.872i$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−17.4 − 6.35i)2-s + (−127. − 107. i)4-s + (−280. + 1.58e3i)5-s + (610. − 512. i)7-s + (6.30e3 + 1.09e4i)8-s + (1.50e4 − 2.59e4i)10-s + (4.49e3 + 2.54e4i)11-s + (1.06e5 − 3.86e4i)13-s + (−1.39e4 + 5.06e3i)14-s + (−2.58e4 − 1.46e5i)16-s + (−6.42e4 + 1.11e5i)17-s + (−1.75e5 − 3.04e5i)19-s + (2.06e5 − 1.72e5i)20-s + (8.35e4 − 4.73e5i)22-s + (1.96e3 + 1.64e3i)23-s + ⋯
L(s)  = 1  + (−0.771 − 0.280i)2-s + (−0.249 − 0.209i)4-s + (−0.200 + 1.13i)5-s + (0.0961 − 0.0806i)7-s + (0.544 + 0.942i)8-s + (0.474 − 0.821i)10-s + (0.0925 + 0.524i)11-s + (1.03 − 0.375i)13-s + (−0.0968 + 0.0352i)14-s + (−0.0987 − 0.560i)16-s + (−0.186 + 0.323i)17-s + (−0.309 − 0.536i)19-s + (0.287 − 0.241i)20-s + (0.0760 − 0.431i)22-s + (0.00146 + 0.00122i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.489 - 0.872i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.489 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-0.489 - 0.872i$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (64, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ -0.489 - 0.872i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.345649 + 0.590237i\)
\(L(\frac12)\) \(\approx\) \(0.345649 + 0.590237i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (17.4 + 6.35i)T + (392. + 329. i)T^{2} \)
5 \( 1 + (280. - 1.58e3i)T + (-1.83e6 - 6.68e5i)T^{2} \)
7 \( 1 + (-610. + 512. i)T + (7.00e6 - 3.97e7i)T^{2} \)
11 \( 1 + (-4.49e3 - 2.54e4i)T + (-2.21e9 + 8.06e8i)T^{2} \)
13 \( 1 + (-1.06e5 + 3.86e4i)T + (8.12e9 - 6.81e9i)T^{2} \)
17 \( 1 + (6.42e4 - 1.11e5i)T + (-5.92e10 - 1.02e11i)T^{2} \)
19 \( 1 + (1.75e5 + 3.04e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-1.96e3 - 1.64e3i)T + (3.12e11 + 1.77e12i)T^{2} \)
29 \( 1 + (-3.90e6 - 1.42e6i)T + (1.11e13 + 9.32e12i)T^{2} \)
31 \( 1 + (4.10e6 + 3.44e6i)T + (4.59e12 + 2.60e13i)T^{2} \)
37 \( 1 + (-1.52e6 + 2.64e6i)T + (-6.49e13 - 1.12e14i)T^{2} \)
41 \( 1 + (-2.20e7 + 8.02e6i)T + (2.50e14 - 2.10e14i)T^{2} \)
43 \( 1 + (-3.33e6 - 1.89e7i)T + (-4.72e14 + 1.71e14i)T^{2} \)
47 \( 1 + (1.67e7 - 1.40e7i)T + (1.94e14 - 1.10e15i)T^{2} \)
53 \( 1 + 8.11e7T + 3.29e15T^{2} \)
59 \( 1 + (3.01e7 - 1.70e8i)T + (-8.14e15 - 2.96e15i)T^{2} \)
61 \( 1 + (7.48e7 - 6.27e7i)T + (2.03e15 - 1.15e16i)T^{2} \)
67 \( 1 + (-2.17e8 + 7.92e7i)T + (2.08e16 - 1.74e16i)T^{2} \)
71 \( 1 + (1.41e8 - 2.45e8i)T + (-2.29e16 - 3.97e16i)T^{2} \)
73 \( 1 + (-2.29e8 - 3.97e8i)T + (-2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (5.29e8 + 1.92e8i)T + (9.18e16 + 7.70e16i)T^{2} \)
83 \( 1 + (6.29e7 + 2.28e7i)T + (1.43e17 + 1.20e17i)T^{2} \)
89 \( 1 + (2.71e8 + 4.69e8i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (-1.23e7 - 7.03e7i)T + (-7.14e17 + 2.60e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85043615253663272348784955861, −11.16307225872655975605520343099, −10.76375068513399559628657718401, −9.631953986895306300013693257324, −8.483466501788578128473723054893, −7.32502275294755885399620021760, −6.00321501227222310732550876340, −4.32934249624878045170180381564, −2.72505371874084125192854852653, −1.24240336678909573524192562746, 0.30138137668303891394576215019, 1.37787166097340610883951404169, 3.68268486884900204430973628745, 4.86075853321564060638842202652, 6.46126991106343218498337153625, 8.022185329507562147709477899184, 8.653228837553833862522526758559, 9.502451198933551253977537109570, 10.92503537345982541649652179200, 12.25159068775253815697603548098

Graph of the $Z$-function along the critical line