Properties

Label 2-3e4-27.2-c8-0-5
Degree $2$
Conductor $81$
Sign $0.978 - 0.207i$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.24 + 0.571i)2-s + (−230. − 83.8i)4-s + (−387. − 462. i)5-s + (−3.86e3 + 1.40e3i)7-s + (−1.42e3 − 824. i)8-s + (−992. − 1.71e3i)10-s + (−1.14e4 + 1.36e4i)11-s + (−882. − 5.00e3i)13-s + (−1.33e4 + 2.34e3i)14-s + (4.39e4 + 3.68e4i)16-s + (−2.37e4 + 1.37e4i)17-s + (9.28e4 − 1.60e5i)19-s + (5.05e4 + 1.38e5i)20-s + (−4.48e4 + 3.76e4i)22-s + (8.84e4 − 2.42e5i)23-s + ⋯
L(s)  = 1  + (0.202 + 0.0357i)2-s + (−0.899 − 0.327i)4-s + (−0.620 − 0.739i)5-s + (−1.60 + 0.585i)7-s + (−0.348 − 0.201i)8-s + (−0.0992 − 0.171i)10-s + (−0.780 + 0.929i)11-s + (−0.0309 − 0.175i)13-s + (−0.346 + 0.0611i)14-s + (0.670 + 0.562i)16-s + (−0.284 + 0.164i)17-s + (0.712 − 1.23i)19-s + (0.316 + 0.868i)20-s + (−0.191 + 0.160i)22-s + (0.315 − 0.868i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.978 - 0.207i$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ 0.978 - 0.207i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.599200 + 0.0628615i\)
\(L(\frac12)\) \(\approx\) \(0.599200 + 0.0628615i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-3.24 - 0.571i)T + (240. + 87.5i)T^{2} \)
5 \( 1 + (387. + 462. i)T + (-6.78e4 + 3.84e5i)T^{2} \)
7 \( 1 + (3.86e3 - 1.40e3i)T + (4.41e6 - 3.70e6i)T^{2} \)
11 \( 1 + (1.14e4 - 1.36e4i)T + (-3.72e7 - 2.11e8i)T^{2} \)
13 \( 1 + (882. + 5.00e3i)T + (-7.66e8 + 2.78e8i)T^{2} \)
17 \( 1 + (2.37e4 - 1.37e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (-9.28e4 + 1.60e5i)T + (-8.49e9 - 1.47e10i)T^{2} \)
23 \( 1 + (-8.84e4 + 2.42e5i)T + (-5.99e10 - 5.03e10i)T^{2} \)
29 \( 1 + (-2.34e5 - 4.13e4i)T + (4.70e11 + 1.71e11i)T^{2} \)
31 \( 1 + (6.18e5 + 2.25e5i)T + (6.53e11 + 5.48e11i)T^{2} \)
37 \( 1 + (-7.79e5 - 1.34e6i)T + (-1.75e12 + 3.04e12i)T^{2} \)
41 \( 1 + (3.82e6 - 6.74e5i)T + (7.50e12 - 2.73e12i)T^{2} \)
43 \( 1 + (1.19e6 + 1.00e6i)T + (2.02e12 + 1.15e13i)T^{2} \)
47 \( 1 + (4.07e5 + 1.11e6i)T + (-1.82e13 + 1.53e13i)T^{2} \)
53 \( 1 - 1.29e7iT - 6.22e13T^{2} \)
59 \( 1 + (-1.38e7 - 1.64e7i)T + (-2.54e13 + 1.44e14i)T^{2} \)
61 \( 1 + (-1.39e7 + 5.08e6i)T + (1.46e14 - 1.23e14i)T^{2} \)
67 \( 1 + (1.06e6 + 6.02e6i)T + (-3.81e14 + 1.38e14i)T^{2} \)
71 \( 1 + (3.07e7 - 1.77e7i)T + (3.22e14 - 5.59e14i)T^{2} \)
73 \( 1 + (-6.89e6 + 1.19e7i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (7.76e6 - 4.40e7i)T + (-1.42e15 - 5.18e14i)T^{2} \)
83 \( 1 + (-4.57e7 - 8.06e6i)T + (2.11e15 + 7.70e14i)T^{2} \)
89 \( 1 + (-3.60e6 - 2.07e6i)T + (1.96e15 + 3.40e15i)T^{2} \)
97 \( 1 + (1.08e8 + 9.11e7i)T + (1.36e15 + 7.71e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86529582147472922632565935155, −12.08543061010236590318891675109, −10.24892910900828900891821714749, −9.360054145296662078185785322180, −8.467781296136203684396413320773, −6.84341012426552291103208241176, −5.39567016504951829839695249628, −4.36855517334169756368100582257, −2.87783425602871505835491470900, −0.54516016211416707587357095627, 0.36523079750711164251316269099, 3.23320134485691458503300925474, 3.64778261318117496925711785691, 5.50883228023285455515452845743, 6.92637377102401733225730579503, 8.045936556985169827752050707896, 9.430689342625330867972938217258, 10.37459365118979037436458939827, 11.67049829577635781978101457290, 12.94890423592124720919253649885

Graph of the $Z$-function along the critical line