L(s) = 1 | + (−13.3 − 2.35i)2-s + (−68.2 − 24.8i)4-s + (636. + 758. i)5-s + (−2.50e3 + 910. i)7-s + (3.85e3 + 2.22e3i)8-s + (−6.70e3 − 1.16e4i)10-s + (−1.53e4 + 1.82e4i)11-s + (4.78e3 + 2.71e4i)13-s + (3.55e4 − 6.26e3i)14-s + (−3.19e4 − 2.67e4i)16-s + (1.05e5 − 6.11e4i)17-s + (−547. + 948. i)19-s + (−2.45e4 − 6.75e4i)20-s + (2.47e5 − 2.07e5i)22-s + (−5.04e4 + 1.38e5i)23-s + ⋯ |
L(s) = 1 | + (−0.833 − 0.146i)2-s + (−0.266 − 0.0969i)4-s + (1.01 + 1.21i)5-s + (−1.04 + 0.379i)7-s + (0.940 + 0.543i)8-s + (−0.670 − 1.16i)10-s + (−1.04 + 1.24i)11-s + (0.167 + 0.949i)13-s + (0.924 − 0.162i)14-s + (−0.487 − 0.408i)16-s + (1.26 − 0.732i)17-s + (−0.00420 + 0.00727i)19-s + (−0.153 − 0.422i)20-s + (1.05 − 0.887i)22-s + (−0.180 + 0.495i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.0362610 - 0.534879i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0362610 - 0.534879i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (13.3 + 2.35i)T + (240. + 87.5i)T^{2} \) |
| 5 | \( 1 + (-636. - 758. i)T + (-6.78e4 + 3.84e5i)T^{2} \) |
| 7 | \( 1 + (2.50e3 - 910. i)T + (4.41e6 - 3.70e6i)T^{2} \) |
| 11 | \( 1 + (1.53e4 - 1.82e4i)T + (-3.72e7 - 2.11e8i)T^{2} \) |
| 13 | \( 1 + (-4.78e3 - 2.71e4i)T + (-7.66e8 + 2.78e8i)T^{2} \) |
| 17 | \( 1 + (-1.05e5 + 6.11e4i)T + (3.48e9 - 6.04e9i)T^{2} \) |
| 19 | \( 1 + (547. - 948. i)T + (-8.49e9 - 1.47e10i)T^{2} \) |
| 23 | \( 1 + (5.04e4 - 1.38e5i)T + (-5.99e10 - 5.03e10i)T^{2} \) |
| 29 | \( 1 + (-9.24e5 - 1.62e5i)T + (4.70e11 + 1.71e11i)T^{2} \) |
| 31 | \( 1 + (-1.31e5 - 4.77e4i)T + (6.53e11 + 5.48e11i)T^{2} \) |
| 37 | \( 1 + (3.79e5 + 6.56e5i)T + (-1.75e12 + 3.04e12i)T^{2} \) |
| 41 | \( 1 + (4.60e6 - 8.11e5i)T + (7.50e12 - 2.73e12i)T^{2} \) |
| 43 | \( 1 + (1.82e6 + 1.53e6i)T + (2.02e12 + 1.15e13i)T^{2} \) |
| 47 | \( 1 + (4.25e5 + 1.16e6i)T + (-1.82e13 + 1.53e13i)T^{2} \) |
| 53 | \( 1 - 6.96e6iT - 6.22e13T^{2} \) |
| 59 | \( 1 + (4.48e6 + 5.34e6i)T + (-2.54e13 + 1.44e14i)T^{2} \) |
| 61 | \( 1 + (2.36e7 - 8.62e6i)T + (1.46e14 - 1.23e14i)T^{2} \) |
| 67 | \( 1 + (3.60e6 + 2.04e7i)T + (-3.81e14 + 1.38e14i)T^{2} \) |
| 71 | \( 1 + (-1.06e7 + 6.15e6i)T + (3.22e14 - 5.59e14i)T^{2} \) |
| 73 | \( 1 + (-3.50e6 + 6.06e6i)T + (-4.03e14 - 6.98e14i)T^{2} \) |
| 79 | \( 1 + (-2.79e6 + 1.58e7i)T + (-1.42e15 - 5.18e14i)T^{2} \) |
| 83 | \( 1 + (4.48e6 + 7.90e5i)T + (2.11e15 + 7.70e14i)T^{2} \) |
| 89 | \( 1 + (-3.86e7 - 2.23e7i)T + (1.96e15 + 3.40e15i)T^{2} \) |
| 97 | \( 1 + (-1.19e7 - 1.00e7i)T + (1.36e15 + 7.71e15i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.48510948738140777055699931522, −12.11000172525827631693839765531, −10.47073232058509048443356007805, −9.966414906082185923792857146931, −9.249630630204811641168753233357, −7.56312155344092343893538006526, −6.49089185998744795455157711372, −5.09881130139785089354561727467, −2.97163743165974883421344764540, −1.79206511741561606992237014849,
0.24817338941040635045304018542, 1.13135289359248195818233359705, 3.27439103545279723981906245153, 5.08368044000495673983205027331, 6.17185612332362640418516781457, 8.045624805215164007578273634412, 8.654521111119650974752341428225, 9.989582786273471258471625466653, 10.31156720315884591769158886219, 12.54153828270908457206740588947