Properties

Label 2-3e4-27.2-c8-0-2
Degree $2$
Conductor $81$
Sign $-0.990 + 0.134i$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−13.3 − 2.35i)2-s + (−68.2 − 24.8i)4-s + (636. + 758. i)5-s + (−2.50e3 + 910. i)7-s + (3.85e3 + 2.22e3i)8-s + (−6.70e3 − 1.16e4i)10-s + (−1.53e4 + 1.82e4i)11-s + (4.78e3 + 2.71e4i)13-s + (3.55e4 − 6.26e3i)14-s + (−3.19e4 − 2.67e4i)16-s + (1.05e5 − 6.11e4i)17-s + (−547. + 948. i)19-s + (−2.45e4 − 6.75e4i)20-s + (2.47e5 − 2.07e5i)22-s + (−5.04e4 + 1.38e5i)23-s + ⋯
L(s)  = 1  + (−0.833 − 0.146i)2-s + (−0.266 − 0.0969i)4-s + (1.01 + 1.21i)5-s + (−1.04 + 0.379i)7-s + (0.940 + 0.543i)8-s + (−0.670 − 1.16i)10-s + (−1.04 + 1.24i)11-s + (0.167 + 0.949i)13-s + (0.924 − 0.162i)14-s + (−0.487 − 0.408i)16-s + (1.26 − 0.732i)17-s + (−0.00420 + 0.00727i)19-s + (−0.153 − 0.422i)20-s + (1.05 − 0.887i)22-s + (−0.180 + 0.495i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-0.990 + 0.134i$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ -0.990 + 0.134i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.0362610 - 0.534879i\)
\(L(\frac12)\) \(\approx\) \(0.0362610 - 0.534879i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (13.3 + 2.35i)T + (240. + 87.5i)T^{2} \)
5 \( 1 + (-636. - 758. i)T + (-6.78e4 + 3.84e5i)T^{2} \)
7 \( 1 + (2.50e3 - 910. i)T + (4.41e6 - 3.70e6i)T^{2} \)
11 \( 1 + (1.53e4 - 1.82e4i)T + (-3.72e7 - 2.11e8i)T^{2} \)
13 \( 1 + (-4.78e3 - 2.71e4i)T + (-7.66e8 + 2.78e8i)T^{2} \)
17 \( 1 + (-1.05e5 + 6.11e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (547. - 948. i)T + (-8.49e9 - 1.47e10i)T^{2} \)
23 \( 1 + (5.04e4 - 1.38e5i)T + (-5.99e10 - 5.03e10i)T^{2} \)
29 \( 1 + (-9.24e5 - 1.62e5i)T + (4.70e11 + 1.71e11i)T^{2} \)
31 \( 1 + (-1.31e5 - 4.77e4i)T + (6.53e11 + 5.48e11i)T^{2} \)
37 \( 1 + (3.79e5 + 6.56e5i)T + (-1.75e12 + 3.04e12i)T^{2} \)
41 \( 1 + (4.60e6 - 8.11e5i)T + (7.50e12 - 2.73e12i)T^{2} \)
43 \( 1 + (1.82e6 + 1.53e6i)T + (2.02e12 + 1.15e13i)T^{2} \)
47 \( 1 + (4.25e5 + 1.16e6i)T + (-1.82e13 + 1.53e13i)T^{2} \)
53 \( 1 - 6.96e6iT - 6.22e13T^{2} \)
59 \( 1 + (4.48e6 + 5.34e6i)T + (-2.54e13 + 1.44e14i)T^{2} \)
61 \( 1 + (2.36e7 - 8.62e6i)T + (1.46e14 - 1.23e14i)T^{2} \)
67 \( 1 + (3.60e6 + 2.04e7i)T + (-3.81e14 + 1.38e14i)T^{2} \)
71 \( 1 + (-1.06e7 + 6.15e6i)T + (3.22e14 - 5.59e14i)T^{2} \)
73 \( 1 + (-3.50e6 + 6.06e6i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (-2.79e6 + 1.58e7i)T + (-1.42e15 - 5.18e14i)T^{2} \)
83 \( 1 + (4.48e6 + 7.90e5i)T + (2.11e15 + 7.70e14i)T^{2} \)
89 \( 1 + (-3.86e7 - 2.23e7i)T + (1.96e15 + 3.40e15i)T^{2} \)
97 \( 1 + (-1.19e7 - 1.00e7i)T + (1.36e15 + 7.71e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48510948738140777055699931522, −12.11000172525827631693839765531, −10.47073232058509048443356007805, −9.966414906082185923792857146931, −9.249630630204811641168753233357, −7.56312155344092343893538006526, −6.49089185998744795455157711372, −5.09881130139785089354561727467, −2.97163743165974883421344764540, −1.79206511741561606992237014849, 0.24817338941040635045304018542, 1.13135289359248195818233359705, 3.27439103545279723981906245153, 5.08368044000495673983205027331, 6.17185612332362640418516781457, 8.045624805215164007578273634412, 8.654521111119650974752341428225, 9.989582786273471258471625466653, 10.31156720315884591769158886219, 12.54153828270908457206740588947

Graph of the $Z$-function along the critical line