Properties

Label 2-3e4-27.16-c1-0-0
Degree $2$
Conductor $81$
Sign $0.998 + 0.0478i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.318 + 0.267i)2-s + (−0.317 − 1.79i)4-s + (2.08 + 0.757i)5-s + (−0.229 + 1.29i)7-s + (0.795 − 1.37i)8-s + (0.460 + 0.797i)10-s + (−4.90 + 1.78i)11-s + (−0.0138 + 0.0116i)13-s + (−0.419 + 0.352i)14-s + (−2.81 + 1.02i)16-s + (−1.56 − 2.71i)17-s + (−0.208 + 0.361i)19-s + (0.702 − 3.98i)20-s + (−2.03 − 0.741i)22-s + (0.179 + 1.01i)23-s + ⋯
L(s)  = 1  + (0.225 + 0.188i)2-s + (−0.158 − 0.899i)4-s + (0.930 + 0.338i)5-s + (−0.0866 + 0.491i)7-s + (0.281 − 0.486i)8-s + (0.145 + 0.252i)10-s + (−1.47 + 0.537i)11-s + (−0.00383 + 0.00321i)13-s + (−0.112 + 0.0941i)14-s + (−0.703 + 0.256i)16-s + (−0.379 − 0.658i)17-s + (−0.0478 + 0.0829i)19-s + (0.157 − 0.891i)20-s + (−0.434 − 0.157i)22-s + (0.0374 + 0.212i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0478i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0478i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.998 + 0.0478i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.998 + 0.0478i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.08822 - 0.0260733i\)
\(L(\frac12)\) \(\approx\) \(1.08822 - 0.0260733i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-0.318 - 0.267i)T + (0.347 + 1.96i)T^{2} \)
5 \( 1 + (-2.08 - 0.757i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (0.229 - 1.29i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (4.90 - 1.78i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.0138 - 0.0116i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (1.56 + 2.71i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.208 - 0.361i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.179 - 1.01i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-5.98 - 5.01i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-0.647 - 3.67i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (2.21 + 3.83i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-2.81 + 2.36i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-7.80 + 2.84i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-1.23 + 6.99i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 1.30T + 53T^{2} \)
59 \( 1 + (3.47 + 1.26i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-1.20 + 6.80i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (8.44 - 7.08i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (3.04 + 5.26i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.273 + 0.473i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.374 - 0.314i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (3.53 + 2.96i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (1.68 - 2.92i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (9.34 - 3.40i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24387988539714490787793734074, −13.54459698412801507145374910640, −12.44239237987208102715746747390, −10.72965541029936158153947640946, −10.07056128146914920897890981060, −8.957404017612768243317791077477, −7.15244069758803295593018271259, −5.86301089413555323757065108626, −4.95526482619938213764591098792, −2.37098045680480032471313580067, 2.66954639704832544177155038989, 4.46187122974390436386343906454, 5.92494874650075946188004769330, 7.63238781957835695483506512628, 8.648415484422967785165682848853, 10.04022828521845496297731492635, 11.10160931119706436784515248821, 12.53166884602824900377401890746, 13.34066146467907994077363197348, 13.85352606963554956385066399051

Graph of the $Z$-function along the critical line