Properties

Label 2-3e4-1.1-c9-0-8
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17.7·2-s − 198.·4-s + 739.·5-s − 6.02e3·7-s − 1.25e4·8-s + 1.31e4·10-s − 1.84e4·11-s + 1.17e5·13-s − 1.06e5·14-s − 1.21e5·16-s + 4.68e5·17-s + 8.34e5·19-s − 1.46e5·20-s − 3.26e5·22-s − 1.32e6·23-s − 1.40e6·25-s + 2.08e6·26-s + 1.19e6·28-s − 6.42e4·29-s + 7.41e6·31-s + 4.28e6·32-s + 8.29e6·34-s − 4.45e6·35-s + 3.68e6·37-s + 1.47e7·38-s − 9.30e6·40-s + 2.53e7·41-s + ⋯
L(s)  = 1  + 0.783·2-s − 0.386·4-s + 0.529·5-s − 0.948·7-s − 1.08·8-s + 0.414·10-s − 0.379·11-s + 1.14·13-s − 0.742·14-s − 0.463·16-s + 1.35·17-s + 1.46·19-s − 0.204·20-s − 0.297·22-s − 0.983·23-s − 0.719·25-s + 0.894·26-s + 0.367·28-s − 0.0168·29-s + 1.44·31-s + 0.722·32-s + 1.06·34-s − 0.502·35-s + 0.322·37-s + 1.15·38-s − 0.574·40-s + 1.40·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.553712446\)
\(L(\frac12)\) \(\approx\) \(2.553712446\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 17.7T + 512T^{2} \)
5 \( 1 - 739.T + 1.95e6T^{2} \)
7 \( 1 + 6.02e3T + 4.03e7T^{2} \)
11 \( 1 + 1.84e4T + 2.35e9T^{2} \)
13 \( 1 - 1.17e5T + 1.06e10T^{2} \)
17 \( 1 - 4.68e5T + 1.18e11T^{2} \)
19 \( 1 - 8.34e5T + 3.22e11T^{2} \)
23 \( 1 + 1.32e6T + 1.80e12T^{2} \)
29 \( 1 + 6.42e4T + 1.45e13T^{2} \)
31 \( 1 - 7.41e6T + 2.64e13T^{2} \)
37 \( 1 - 3.68e6T + 1.29e14T^{2} \)
41 \( 1 - 2.53e7T + 3.27e14T^{2} \)
43 \( 1 - 2.42e7T + 5.02e14T^{2} \)
47 \( 1 + 7.03e6T + 1.11e15T^{2} \)
53 \( 1 - 3.10e7T + 3.29e15T^{2} \)
59 \( 1 - 1.53e8T + 8.66e15T^{2} \)
61 \( 1 + 1.55e8T + 1.16e16T^{2} \)
67 \( 1 + 1.39e7T + 2.72e16T^{2} \)
71 \( 1 - 3.45e8T + 4.58e16T^{2} \)
73 \( 1 + 3.01e8T + 5.88e16T^{2} \)
79 \( 1 - 3.59e8T + 1.19e17T^{2} \)
83 \( 1 - 1.05e8T + 1.86e17T^{2} \)
89 \( 1 + 8.60e8T + 3.50e17T^{2} \)
97 \( 1 - 9.48e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72837643692272685892768646732, −11.75999822076681290300688058909, −10.07980136589748068554620439514, −9.383856988531253749802593532759, −7.936512360438357485376511808210, −6.17356906442839206302603917553, −5.52458648484936601648929499077, −3.91113305022698581968570456926, −2.90113392315615546691943121808, −0.851661001140223086632372079579, 0.851661001140223086632372079579, 2.90113392315615546691943121808, 3.91113305022698581968570456926, 5.52458648484936601648929499077, 6.17356906442839206302603917553, 7.936512360438357485376511808210, 9.383856988531253749802593532759, 10.07980136589748068554620439514, 11.75999822076681290300688058909, 12.72837643692272685892768646732

Graph of the $Z$-function along the critical line