Properties

Label 2-3e4-1.1-c9-0-2
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25.6·2-s + 146.·4-s − 706.·5-s − 4.56e3·7-s + 9.38e3·8-s + 1.81e4·10-s − 7.14e4·11-s − 2.64e4·13-s + 1.17e5·14-s − 3.15e5·16-s + 3.14e5·17-s − 9.04e5·19-s − 1.03e5·20-s + 1.83e6·22-s + 1.11e5·23-s − 1.45e6·25-s + 6.77e5·26-s − 6.67e5·28-s − 4.38e6·29-s − 9.88e6·31-s + 3.29e6·32-s − 8.07e6·34-s + 3.22e6·35-s − 6.32e6·37-s + 2.31e7·38-s − 6.63e6·40-s − 5.36e6·41-s + ⋯
L(s)  = 1  − 1.13·2-s + 0.285·4-s − 0.505·5-s − 0.719·7-s + 0.810·8-s + 0.573·10-s − 1.47·11-s − 0.256·13-s + 0.815·14-s − 1.20·16-s + 0.914·17-s − 1.59·19-s − 0.144·20-s + 1.66·22-s + 0.0833·23-s − 0.744·25-s + 0.290·26-s − 0.205·28-s − 1.15·29-s − 1.92·31-s + 0.554·32-s − 1.03·34-s + 0.363·35-s − 0.554·37-s + 1.80·38-s − 0.409·40-s − 0.296·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.2363399313\)
\(L(\frac12)\) \(\approx\) \(0.2363399313\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 25.6T + 512T^{2} \)
5 \( 1 + 706.T + 1.95e6T^{2} \)
7 \( 1 + 4.56e3T + 4.03e7T^{2} \)
11 \( 1 + 7.14e4T + 2.35e9T^{2} \)
13 \( 1 + 2.64e4T + 1.06e10T^{2} \)
17 \( 1 - 3.14e5T + 1.18e11T^{2} \)
19 \( 1 + 9.04e5T + 3.22e11T^{2} \)
23 \( 1 - 1.11e5T + 1.80e12T^{2} \)
29 \( 1 + 4.38e6T + 1.45e13T^{2} \)
31 \( 1 + 9.88e6T + 2.64e13T^{2} \)
37 \( 1 + 6.32e6T + 1.29e14T^{2} \)
41 \( 1 + 5.36e6T + 3.27e14T^{2} \)
43 \( 1 - 2.24e7T + 5.02e14T^{2} \)
47 \( 1 - 4.47e7T + 1.11e15T^{2} \)
53 \( 1 - 4.00e7T + 3.29e15T^{2} \)
59 \( 1 - 9.58e7T + 8.66e15T^{2} \)
61 \( 1 - 2.02e7T + 1.16e16T^{2} \)
67 \( 1 - 1.82e8T + 2.72e16T^{2} \)
71 \( 1 + 1.38e8T + 4.58e16T^{2} \)
73 \( 1 + 2.17e8T + 5.88e16T^{2} \)
79 \( 1 - 3.94e8T + 1.19e17T^{2} \)
83 \( 1 - 4.73e8T + 1.86e17T^{2} \)
89 \( 1 + 2.60e8T + 3.50e17T^{2} \)
97 \( 1 - 5.74e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54765928872496892275454189753, −10.95615496250064278965039070892, −10.21020326640196161455487114365, −9.145436146396520928876861215020, −8.018946752032326999034479841257, −7.22871590816500933397902746430, −5.48141470201649627002957583645, −3.85699222767582606127405564420, −2.15713746413767328676582118586, −0.31994093592645233135407272908, 0.31994093592645233135407272908, 2.15713746413767328676582118586, 3.85699222767582606127405564420, 5.48141470201649627002957583645, 7.22871590816500933397902746430, 8.018946752032326999034479841257, 9.145436146396520928876861215020, 10.21020326640196161455487114365, 10.95615496250064278965039070892, 12.54765928872496892275454189753

Graph of the $Z$-function along the critical line