Properties

Label 2-3e4-1.1-c9-0-15
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 34.8·2-s + 703.·4-s − 2.00e3·5-s + 4.86e3·7-s + 6.68e3·8-s − 6.99e4·10-s + 7.39e4·11-s + 2.64e4·13-s + 1.69e5·14-s − 1.27e5·16-s + 3.00e5·17-s + 1.80e5·19-s − 1.41e6·20-s + 2.57e6·22-s + 2.13e6·23-s + 2.07e6·25-s + 9.23e5·26-s + 3.42e6·28-s + 1.89e6·29-s + 5.07e6·31-s − 7.85e6·32-s + 1.04e7·34-s − 9.76e6·35-s − 2.17e6·37-s + 6.29e6·38-s − 1.34e7·40-s + 7.63e6·41-s + ⋯
L(s)  = 1  + 1.54·2-s + 1.37·4-s − 1.43·5-s + 0.766·7-s + 0.576·8-s − 2.21·10-s + 1.52·11-s + 0.257·13-s + 1.18·14-s − 0.485·16-s + 0.872·17-s + 0.317·19-s − 1.97·20-s + 2.34·22-s + 1.58·23-s + 1.06·25-s + 0.396·26-s + 1.05·28-s + 0.497·29-s + 0.986·31-s − 1.32·32-s + 1.34·34-s − 1.10·35-s − 0.190·37-s + 0.489·38-s − 0.828·40-s + 0.421·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.680933651\)
\(L(\frac12)\) \(\approx\) \(4.680933651\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 34.8T + 512T^{2} \)
5 \( 1 + 2.00e3T + 1.95e6T^{2} \)
7 \( 1 - 4.86e3T + 4.03e7T^{2} \)
11 \( 1 - 7.39e4T + 2.35e9T^{2} \)
13 \( 1 - 2.64e4T + 1.06e10T^{2} \)
17 \( 1 - 3.00e5T + 1.18e11T^{2} \)
19 \( 1 - 1.80e5T + 3.22e11T^{2} \)
23 \( 1 - 2.13e6T + 1.80e12T^{2} \)
29 \( 1 - 1.89e6T + 1.45e13T^{2} \)
31 \( 1 - 5.07e6T + 2.64e13T^{2} \)
37 \( 1 + 2.17e6T + 1.29e14T^{2} \)
41 \( 1 - 7.63e6T + 3.27e14T^{2} \)
43 \( 1 + 1.37e7T + 5.02e14T^{2} \)
47 \( 1 - 5.06e7T + 1.11e15T^{2} \)
53 \( 1 + 2.60e7T + 3.29e15T^{2} \)
59 \( 1 + 4.22e7T + 8.66e15T^{2} \)
61 \( 1 + 4.87e7T + 1.16e16T^{2} \)
67 \( 1 + 1.71e8T + 2.72e16T^{2} \)
71 \( 1 + 8.48e7T + 4.58e16T^{2} \)
73 \( 1 - 1.62e8T + 5.88e16T^{2} \)
79 \( 1 - 1.90e8T + 1.19e17T^{2} \)
83 \( 1 - 4.43e8T + 1.86e17T^{2} \)
89 \( 1 - 4.26e8T + 3.50e17T^{2} \)
97 \( 1 - 1.61e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27818478731238687362975908561, −11.81539883803416648308359987858, −11.00304527554797982108211713742, −8.945114310164150626121909076779, −7.63251997826544929638180490211, −6.49098664691017065755002412613, −4.97343962532240215808624884004, −4.07440119783667610187292103456, −3.15986725694404111905442763365, −1.10118942545867924182290363623, 1.10118942545867924182290363623, 3.15986725694404111905442763365, 4.07440119783667610187292103456, 4.97343962532240215808624884004, 6.49098664691017065755002412613, 7.63251997826544929638180490211, 8.945114310164150626121909076779, 11.00304527554797982108211713742, 11.81539883803416648308359987858, 12.27818478731238687362975908561

Graph of the $Z$-function along the critical line