Properties

Label 2-3e4-1.1-c9-0-11
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $41.7179$
Root an. cond. $6.45893$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67·2-s − 509.·4-s + 1.53e3·5-s + 5.65e3·7-s − 1.71e3·8-s + 2.58e3·10-s − 1.98e4·11-s + 9.97e4·13-s + 9.50e3·14-s + 2.57e5·16-s − 5.03e5·17-s − 6.70e5·19-s − 7.83e5·20-s − 3.32e4·22-s + 1.93e6·23-s + 4.14e5·25-s + 1.67e5·26-s − 2.88e6·28-s + 4.32e6·29-s + 1.02e6·31-s + 1.31e6·32-s − 8.46e5·34-s + 8.70e6·35-s + 1.81e7·37-s − 1.12e6·38-s − 2.63e6·40-s − 9.30e6·41-s + ⋯
L(s)  = 1  + 0.0742·2-s − 0.994·4-s + 1.10·5-s + 0.890·7-s − 0.148·8-s + 0.0817·10-s − 0.408·11-s + 0.969·13-s + 0.0660·14-s + 0.983·16-s − 1.46·17-s − 1.18·19-s − 1.09·20-s − 0.0302·22-s + 1.43·23-s + 0.212·25-s + 0.0719·26-s − 0.885·28-s + 1.13·29-s + 0.199·31-s + 0.221·32-s − 0.108·34-s + 0.980·35-s + 1.59·37-s − 0.0876·38-s − 0.162·40-s − 0.514·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(41.7179\)
Root analytic conductor: \(6.45893\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.255208248\)
\(L(\frac12)\) \(\approx\) \(2.255208248\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 1.67T + 512T^{2} \)
5 \( 1 - 1.53e3T + 1.95e6T^{2} \)
7 \( 1 - 5.65e3T + 4.03e7T^{2} \)
11 \( 1 + 1.98e4T + 2.35e9T^{2} \)
13 \( 1 - 9.97e4T + 1.06e10T^{2} \)
17 \( 1 + 5.03e5T + 1.18e11T^{2} \)
19 \( 1 + 6.70e5T + 3.22e11T^{2} \)
23 \( 1 - 1.93e6T + 1.80e12T^{2} \)
29 \( 1 - 4.32e6T + 1.45e13T^{2} \)
31 \( 1 - 1.02e6T + 2.64e13T^{2} \)
37 \( 1 - 1.81e7T + 1.29e14T^{2} \)
41 \( 1 + 9.30e6T + 3.27e14T^{2} \)
43 \( 1 + 1.57e6T + 5.02e14T^{2} \)
47 \( 1 - 3.83e7T + 1.11e15T^{2} \)
53 \( 1 - 4.39e7T + 3.29e15T^{2} \)
59 \( 1 - 1.61e8T + 8.66e15T^{2} \)
61 \( 1 - 1.45e8T + 1.16e16T^{2} \)
67 \( 1 + 8.15e6T + 2.72e16T^{2} \)
71 \( 1 - 1.10e8T + 4.58e16T^{2} \)
73 \( 1 - 1.42e8T + 5.88e16T^{2} \)
79 \( 1 + 2.00e8T + 1.19e17T^{2} \)
83 \( 1 - 5.11e8T + 1.86e17T^{2} \)
89 \( 1 + 2.71e8T + 3.50e17T^{2} \)
97 \( 1 + 5.98e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99021187473819810857203045260, −11.23722749033001883315590488935, −10.27334718194111777407804504105, −9.000442947870040350527078832973, −8.331261856501678333989935601034, −6.47726004582235483029647290709, −5.26065825893916907497908057518, −4.25205122071406077222340301744, −2.33396761687780766088022054079, −0.913182248682956404973070957075, 0.913182248682956404973070957075, 2.33396761687780766088022054079, 4.25205122071406077222340301744, 5.26065825893916907497908057518, 6.47726004582235483029647290709, 8.331261856501678333989935601034, 9.000442947870040350527078832973, 10.27334718194111777407804504105, 11.23722749033001883315590488935, 12.99021187473819810857203045260

Graph of the $Z$-function along the critical line