L(s) = 1 | + 16.4i·2-s − 14·4-s + 427. i·5-s − 679·7-s + 3.97e3i·8-s − 7.01e3·10-s + 1.33e4i·11-s − 3.08e4·13-s − 1.11e4i·14-s − 6.89e4·16-s − 1.28e5i·17-s − 1.38e5·19-s − 5.98e3i·20-s − 2.19e5·22-s + 3.03e5i·23-s + ⋯ |
L(s) = 1 | + 1.02i·2-s − 0.0546·4-s + 0.683i·5-s − 0.282·7-s + 0.970i·8-s − 0.701·10-s + 0.913i·11-s − 1.07·13-s − 0.290i·14-s − 1.05·16-s − 1.53i·17-s − 1.06·19-s − 0.0373i·20-s − 0.938·22-s + 1.08i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.37556i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37556i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 - 16.4iT - 256T^{2} \) |
| 5 | \( 1 - 427. iT - 3.90e5T^{2} \) |
| 7 | \( 1 + 679T + 5.76e6T^{2} \) |
| 11 | \( 1 - 1.33e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 3.08e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 1.28e5iT - 6.97e9T^{2} \) |
| 19 | \( 1 + 1.38e5T + 1.69e10T^{2} \) |
| 23 | \( 1 - 3.03e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 1.32e6iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 3.52e5T + 8.52e11T^{2} \) |
| 37 | \( 1 - 1.18e6T + 3.51e12T^{2} \) |
| 41 | \( 1 + 1.09e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 6.24e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + 2.39e3iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 1.25e7iT - 6.22e13T^{2} \) |
| 59 | \( 1 + 1.05e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 1.65e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 7.66e6T + 4.06e14T^{2} \) |
| 71 | \( 1 + 2.32e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 2.49e7T + 8.06e14T^{2} \) |
| 79 | \( 1 - 4.16e7T + 1.51e15T^{2} \) |
| 83 | \( 1 - 4.47e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 7.40e5iT - 3.93e15T^{2} \) |
| 97 | \( 1 + 1.05e8T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.99404548306247767802434295871, −14.96883344535685330261818307806, −14.16344382070777094656712276797, −12.39494114115470395758272949270, −10.93686406744189949888581782278, −9.387476464449158266887972907222, −7.49975358554839922812457170890, −6.74705960993782528510696168620, −5.02901659207401034809314560333, −2.55351047092598079542655566795,
0.59446233608563724080527499797, 2.39024521247924996975960912689, 4.18085328076651790579320775088, 6.30580835811470775177758640253, 8.359051456261112438527311289079, 9.874790776959160213759389323245, 11.02038796425741451751658987422, 12.37322608397139633357734425430, 13.07345585418015107305737895843, 14.84714222363863103811257621459