L(s) = 1 | − 5.10i·2-s + 37.9·4-s − 60.5i·5-s + 176.·7-s − 520. i·8-s − 309.·10-s − 2.31e3i·11-s − 1.55e3·13-s − 902. i·14-s − 228.·16-s + 2.11e3i·17-s + 9.45e3·19-s − 2.29e3i·20-s − 1.18e4·22-s + 1.77e4i·23-s + ⋯ |
L(s) = 1 | − 0.638i·2-s + 0.592·4-s − 0.484i·5-s + 0.515·7-s − 1.01i·8-s − 0.309·10-s − 1.74i·11-s − 0.707·13-s − 0.328i·14-s − 0.0556·16-s + 0.430i·17-s + 1.37·19-s − 0.287i·20-s − 1.11·22-s + 1.46i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(1.32877 - 1.32877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32877 - 1.32877i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + 5.10iT - 64T^{2} \) |
| 5 | \( 1 + 60.5iT - 1.56e4T^{2} \) |
| 7 | \( 1 - 176.T + 1.17e5T^{2} \) |
| 11 | \( 1 + 2.31e3iT - 1.77e6T^{2} \) |
| 13 | \( 1 + 1.55e3T + 4.82e6T^{2} \) |
| 17 | \( 1 - 2.11e3iT - 2.41e7T^{2} \) |
| 19 | \( 1 - 9.45e3T + 4.70e7T^{2} \) |
| 23 | \( 1 - 1.77e4iT - 1.48e8T^{2} \) |
| 29 | \( 1 - 3.15e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 5.04e4T + 8.87e8T^{2} \) |
| 37 | \( 1 - 4.26e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 2.83e4iT - 4.75e9T^{2} \) |
| 43 | \( 1 - 3.91e4T + 6.32e9T^{2} \) |
| 47 | \( 1 - 6.15e4iT - 1.07e10T^{2} \) |
| 53 | \( 1 - 7.77e4iT - 2.21e10T^{2} \) |
| 59 | \( 1 - 3.30e5iT - 4.21e10T^{2} \) |
| 61 | \( 1 + 2.72e4T + 5.15e10T^{2} \) |
| 67 | \( 1 - 3.81e5T + 9.04e10T^{2} \) |
| 71 | \( 1 + 1.27e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 + 1.77e5T + 1.51e11T^{2} \) |
| 79 | \( 1 - 7.86e4T + 2.43e11T^{2} \) |
| 83 | \( 1 + 1.18e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 + 1.12e6iT - 4.96e11T^{2} \) |
| 97 | \( 1 - 1.10e6T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.92968926219862522498187056591, −14.38292029036137652378662797048, −12.97597714773127252939315473097, −11.68850162477862538934367008234, −10.82307789486735683815727368681, −9.169973564265543068494978770141, −7.51096003738820544113419519334, −5.56116539722861916486513866196, −3.28382371371266602177277263939, −1.21002099334173874007745561147,
2.30730205666125662886344636723, 4.98452367959994773267931509316, 6.84420842384134127255055409448, 7.74030963047841981072430607430, 9.778400741353619927688880912671, 11.23807923422349688427440998717, 12.43671431520779429291271824882, 14.43631531137966918121246103248, 14.97508835547711023571448370124, 16.24970639598581000361995025001