L(s) = 1 | − 3i·2-s + 7·4-s − 33i·5-s − 19·7-s − 69i·8-s − 99·10-s + 123i·11-s + 302·13-s + 57i·14-s − 95·16-s + 414i·17-s − 304·19-s − 231i·20-s + 369·22-s + 300i·23-s + ⋯ |
L(s) = 1 | − 0.750i·2-s + 0.437·4-s − 1.32i·5-s − 0.387·7-s − 1.07i·8-s − 0.989·10-s + 1.01i·11-s + 1.78·13-s + 0.290i·14-s − 0.371·16-s + 1.43i·17-s − 0.842·19-s − 0.577i·20-s + 0.762·22-s + 0.567i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.05829 - 1.05829i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05829 - 1.05829i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + 3iT - 16T^{2} \) |
| 5 | \( 1 + 33iT - 625T^{2} \) |
| 7 | \( 1 + 19T + 2.40e3T^{2} \) |
| 11 | \( 1 - 123iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 302T + 2.85e4T^{2} \) |
| 17 | \( 1 - 414iT - 8.35e4T^{2} \) |
| 19 | \( 1 + 304T + 1.30e5T^{2} \) |
| 23 | \( 1 - 300iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 678iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 239T + 9.23e5T^{2} \) |
| 37 | \( 1 - 740T + 1.87e6T^{2} \) |
| 41 | \( 1 - 228iT - 2.82e6T^{2} \) |
| 43 | \( 1 + 982T + 3.41e6T^{2} \) |
| 47 | \( 1 - 2.16e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 1.59e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + 2.92e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 316T + 1.38e7T^{2} \) |
| 67 | \( 1 - 4.62e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 1.81e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 3.03e3T + 2.83e7T^{2} \) |
| 79 | \( 1 + 1.04e4T + 3.89e7T^{2} \) |
| 83 | \( 1 - 1.26e4iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 7.00e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 6.51e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.23279407038076774837417964119, −15.31650150181296386185682261607, −13.11924741795611269714341046009, −12.58931403462131941534971713157, −11.18386426520262237837112012986, −9.810941832294436441718305423684, −8.356504099295465831842273148100, −6.25477143298326408900515905722, −4.03088518790966787447861190872, −1.50186504539961395047944735848,
3.05553397015761697482722952315, 6.04368205348361137920981572860, 6.92663286302957008782946200185, 8.537052936300178784252267315297, 10.66317134386680375165190413963, 11.42635878253882303189727707945, 13.57193457608714596607695177070, 14.57240935625533123466617305303, 15.76107984422775803842044476115, 16.50259104642843069262332811953