Properties

Label 2-3e3-27.22-c5-0-8
Degree $2$
Conductor $27$
Sign $0.279 + 0.960i$
Analytic cond. $4.33036$
Root an. cond. $2.08095$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.33 + 2.79i)2-s + (−15.5 + 0.263i)3-s + (−2.27 + 12.8i)4-s + (28.5 − 10.4i)5-s + (51.1 − 44.4i)6-s + (−33.9 − 192. i)7-s + (−98.0 − 169. i)8-s + (242. − 8.21i)9-s + (−66.1 + 114. i)10-s + (394. + 143. i)11-s + (32.0 − 201. i)12-s + (−753. − 632. i)13-s + (650. + 545. i)14-s + (−442. + 169. i)15-s + (407. + 148. i)16-s + (−370. + 641. i)17-s + ⋯
L(s)  = 1  + (−0.588 + 0.494i)2-s + (−0.999 + 0.0169i)3-s + (−0.0710 + 0.403i)4-s + (0.511 − 0.186i)5-s + (0.580 − 0.503i)6-s + (−0.261 − 1.48i)7-s + (−0.541 − 0.938i)8-s + (0.999 − 0.0337i)9-s + (−0.209 + 0.362i)10-s + (0.983 + 0.358i)11-s + (0.0642 − 0.404i)12-s + (−1.23 − 1.03i)13-s + (0.887 + 0.744i)14-s + (−0.508 + 0.194i)15-s + (0.397 + 0.144i)16-s + (−0.310 + 0.538i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.279 + 0.960i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.279 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.279 + 0.960i$
Analytic conductor: \(4.33036\)
Root analytic conductor: \(2.08095\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5/2),\ 0.279 + 0.960i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.415688 - 0.311888i\)
\(L(\frac12)\) \(\approx\) \(0.415688 - 0.311888i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (15.5 - 0.263i)T \)
good2 \( 1 + (3.33 - 2.79i)T + (5.55 - 31.5i)T^{2} \)
5 \( 1 + (-28.5 + 10.4i)T + (2.39e3 - 2.00e3i)T^{2} \)
7 \( 1 + (33.9 + 192. i)T + (-1.57e4 + 5.74e3i)T^{2} \)
11 \( 1 + (-394. - 143. i)T + (1.23e5 + 1.03e5i)T^{2} \)
13 \( 1 + (753. + 632. i)T + (6.44e4 + 3.65e5i)T^{2} \)
17 \( 1 + (370. - 641. i)T + (-7.09e5 - 1.22e6i)T^{2} \)
19 \( 1 + (625. + 1.08e3i)T + (-1.23e6 + 2.14e6i)T^{2} \)
23 \( 1 + (-637. + 3.61e3i)T + (-6.04e6 - 2.20e6i)T^{2} \)
29 \( 1 + (318. - 267. i)T + (3.56e6 - 2.01e7i)T^{2} \)
31 \( 1 + (-1.15e3 + 6.52e3i)T + (-2.69e7 - 9.79e6i)T^{2} \)
37 \( 1 + (636. - 1.10e3i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + (7.66e3 + 6.43e3i)T + (2.01e7 + 1.14e8i)T^{2} \)
43 \( 1 + (-4.88e3 - 1.77e3i)T + (1.12e8 + 9.44e7i)T^{2} \)
47 \( 1 + (-3.08e3 - 1.75e4i)T + (-2.15e8 + 7.84e7i)T^{2} \)
53 \( 1 - 5.15e3T + 4.18e8T^{2} \)
59 \( 1 + (2.52e4 - 9.19e3i)T + (5.47e8 - 4.59e8i)T^{2} \)
61 \( 1 + (-3.71e3 - 2.10e4i)T + (-7.93e8 + 2.88e8i)T^{2} \)
67 \( 1 + (7.89e3 + 6.62e3i)T + (2.34e8 + 1.32e9i)T^{2} \)
71 \( 1 + (-2.11e4 + 3.66e4i)T + (-9.02e8 - 1.56e9i)T^{2} \)
73 \( 1 + (432. + 749. i)T + (-1.03e9 + 1.79e9i)T^{2} \)
79 \( 1 + (-8.00e4 + 6.71e4i)T + (5.34e8 - 3.03e9i)T^{2} \)
83 \( 1 + (2.93e4 - 2.46e4i)T + (6.84e8 - 3.87e9i)T^{2} \)
89 \( 1 + (-4.19e4 - 7.26e4i)T + (-2.79e9 + 4.83e9i)T^{2} \)
97 \( 1 + (3.18e4 + 1.16e4i)T + (6.57e9 + 5.51e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.75805353555630558214029735664, −15.15600653207501400620351665585, −13.28379972152860026961848665755, −12.34004215254713981605055219994, −10.57251349606200069059029406755, −9.523729435812660086461444259372, −7.51482804751699091590613042055, −6.48895593303786878731684223593, −4.32029065093275035181320314027, −0.46479930430982686345764736696, 1.91060477790726760434056098230, 5.29976455227028135596104426610, 6.47117868689815240045858109442, 9.110578039420277715651469715257, 9.910230842068499305182506021396, 11.51924514004532223610333977242, 12.13809057658679688828306799228, 14.14291670530872842150832202088, 15.42749956537856638956870876806, 16.90128536833506698163548635211

Graph of the $Z$-function along the critical line