Properties

Label 2-3e3-27.2-c8-0-12
Degree $2$
Conductor $27$
Sign $0.231 + 0.972i$
Analytic cond. $10.9992$
Root an. cond. $3.31650$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−18.2 − 3.22i)2-s + (61.0 + 53.2i)3-s + (83.2 + 30.2i)4-s + (−223. − 266. i)5-s + (−944. − 1.16e3i)6-s + (−1.43e3 + 523. i)7-s + (2.69e3 + 1.55e3i)8-s + (892. + 6.50e3i)9-s + (3.22e3 + 5.58e3i)10-s + (262. − 312. i)11-s + (3.46e3 + 6.27e3i)12-s + (−7.24e3 − 4.10e4i)13-s + (2.79e4 − 4.93e3i)14-s + (536. − 2.81e4i)15-s + (−6.15e4 − 5.16e4i)16-s + (5.26e4 − 3.03e4i)17-s + ⋯
L(s)  = 1  + (−1.14 − 0.201i)2-s + (0.753 + 0.657i)3-s + (0.325 + 0.118i)4-s + (−0.357 − 0.425i)5-s + (−0.728 − 0.902i)6-s + (−0.599 + 0.218i)7-s + (0.657 + 0.379i)8-s + (0.136 + 0.990i)9-s + (0.322 + 0.558i)10-s + (0.0179 − 0.0213i)11-s + (0.167 + 0.302i)12-s + (−0.253 − 1.43i)13-s + (0.728 − 0.128i)14-s + (0.0105 − 0.555i)15-s + (−0.939 − 0.788i)16-s + (0.630 − 0.363i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.231 + 0.972i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.231 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.231 + 0.972i$
Analytic conductor: \(10.9992\)
Root analytic conductor: \(3.31650\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :4),\ 0.231 + 0.972i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.619553 - 0.489368i\)
\(L(\frac12)\) \(\approx\) \(0.619553 - 0.489368i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-61.0 - 53.2i)T \)
good2 \( 1 + (18.2 + 3.22i)T + (240. + 87.5i)T^{2} \)
5 \( 1 + (223. + 266. i)T + (-6.78e4 + 3.84e5i)T^{2} \)
7 \( 1 + (1.43e3 - 523. i)T + (4.41e6 - 3.70e6i)T^{2} \)
11 \( 1 + (-262. + 312. i)T + (-3.72e7 - 2.11e8i)T^{2} \)
13 \( 1 + (7.24e3 + 4.10e4i)T + (-7.66e8 + 2.78e8i)T^{2} \)
17 \( 1 + (-5.26e4 + 3.03e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (-8.16e4 + 1.41e5i)T + (-8.49e9 - 1.47e10i)T^{2} \)
23 \( 1 + (-8.85e4 + 2.43e5i)T + (-5.99e10 - 5.03e10i)T^{2} \)
29 \( 1 + (-8.33e5 - 1.46e5i)T + (4.70e11 + 1.71e11i)T^{2} \)
31 \( 1 + (7.33e5 + 2.67e5i)T + (6.53e11 + 5.48e11i)T^{2} \)
37 \( 1 + (8.58e5 + 1.48e6i)T + (-1.75e12 + 3.04e12i)T^{2} \)
41 \( 1 + (2.46e4 - 4.34e3i)T + (7.50e12 - 2.73e12i)T^{2} \)
43 \( 1 + (-7.38e5 - 6.20e5i)T + (2.02e12 + 1.15e13i)T^{2} \)
47 \( 1 + (-4.63e5 - 1.27e6i)T + (-1.82e13 + 1.53e13i)T^{2} \)
53 \( 1 - 6.06e6iT - 6.22e13T^{2} \)
59 \( 1 + (1.23e7 + 1.47e7i)T + (-2.54e13 + 1.44e14i)T^{2} \)
61 \( 1 + (-7.35e6 + 2.67e6i)T + (1.46e14 - 1.23e14i)T^{2} \)
67 \( 1 + (3.57e6 + 2.02e7i)T + (-3.81e14 + 1.38e14i)T^{2} \)
71 \( 1 + (-1.86e7 + 1.07e7i)T + (3.22e14 - 5.59e14i)T^{2} \)
73 \( 1 + (2.63e7 - 4.56e7i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (-6.77e6 + 3.84e7i)T + (-1.42e15 - 5.18e14i)T^{2} \)
83 \( 1 + (1.82e7 + 3.21e6i)T + (2.11e15 + 7.70e14i)T^{2} \)
89 \( 1 + (-7.85e7 - 4.53e7i)T + (1.96e15 + 3.40e15i)T^{2} \)
97 \( 1 + (-5.90e7 - 4.95e7i)T + (1.36e15 + 7.71e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.60488938160402091521842760793, −14.12322621163610804571471772088, −12.67787505004297254557723277721, −10.77786276154506216606019705381, −9.741039423726593352941374141131, −8.740745598573533058024494489545, −7.66626598811386401208354779249, −4.91507936565704012872869653609, −2.86706314203625056611075044491, −0.52423694901844097185554919026, 1.42617667580181438373211399888, 3.60679268428417583267066141124, 6.78037793314255655315033887710, 7.70073727344038820573585169385, 9.029756662758913610792303402339, 10.05613838996262818139243404915, 11.90884609970989061058536038093, 13.40081070038760611228580469390, 14.51395114534015549013126226862, 16.03073895276789547964035729484

Graph of the $Z$-function along the critical line