Properties

Label 2-3e3-27.13-c5-0-9
Degree $2$
Conductor $27$
Sign $-0.882 + 0.471i$
Analytic cond. $4.33036$
Root an. cond. $2.08095$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.515 − 2.92i)2-s + (−8.95 + 12.7i)3-s + (21.7 − 7.92i)4-s + (−68.6 − 57.6i)5-s + (41.9 + 19.6i)6-s + (−72.2 − 26.3i)7-s + (−81.9 − 141. i)8-s + (−82.4 − 228. i)9-s + (−133. + 230. i)10-s + (−343. + 288. i)11-s + (−93.9 + 348. i)12-s + (50.1 − 284. i)13-s + (−39.6 + 224. i)14-s + (1.35e3 − 359. i)15-s + (195. − 163. i)16-s + (642. − 1.11e3i)17-s + ⋯
L(s)  = 1  + (−0.0911 − 0.517i)2-s + (−0.574 + 0.818i)3-s + (0.680 − 0.247i)4-s + (−1.22 − 1.03i)5-s + (0.475 + 0.222i)6-s + (−0.557 − 0.202i)7-s + (−0.452 − 0.784i)8-s + (−0.339 − 0.940i)9-s + (−0.420 + 0.729i)10-s + (−0.855 + 0.717i)11-s + (−0.188 + 0.699i)12-s + (0.0823 − 0.466i)13-s + (−0.0540 + 0.306i)14-s + (1.54 − 0.412i)15-s + (0.190 − 0.159i)16-s + (0.539 − 0.933i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.882 + 0.471i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.882 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-0.882 + 0.471i$
Analytic conductor: \(4.33036\)
Root analytic conductor: \(2.08095\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5/2),\ -0.882 + 0.471i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.141435 - 0.565142i\)
\(L(\frac12)\) \(\approx\) \(0.141435 - 0.565142i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (8.95 - 12.7i)T \)
good2 \( 1 + (0.515 + 2.92i)T + (-30.0 + 10.9i)T^{2} \)
5 \( 1 + (68.6 + 57.6i)T + (542. + 3.07e3i)T^{2} \)
7 \( 1 + (72.2 + 26.3i)T + (1.28e4 + 1.08e4i)T^{2} \)
11 \( 1 + (343. - 288. i)T + (2.79e4 - 1.58e5i)T^{2} \)
13 \( 1 + (-50.1 + 284. i)T + (-3.48e5 - 1.26e5i)T^{2} \)
17 \( 1 + (-642. + 1.11e3i)T + (-7.09e5 - 1.22e6i)T^{2} \)
19 \( 1 + (-829. - 1.43e3i)T + (-1.23e6 + 2.14e6i)T^{2} \)
23 \( 1 + (407. - 148. i)T + (4.93e6 - 4.13e6i)T^{2} \)
29 \( 1 + (291. + 1.65e3i)T + (-1.92e7 + 7.01e6i)T^{2} \)
31 \( 1 + (7.87e3 - 2.86e3i)T + (2.19e7 - 1.84e7i)T^{2} \)
37 \( 1 + (-4.42e3 + 7.66e3i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + (-321. + 1.82e3i)T + (-1.08e8 - 3.96e7i)T^{2} \)
43 \( 1 + (-1.62e4 + 1.36e4i)T + (2.55e7 - 1.44e8i)T^{2} \)
47 \( 1 + (2.10e4 + 7.67e3i)T + (1.75e8 + 1.47e8i)T^{2} \)
53 \( 1 - 2.47e4T + 4.18e8T^{2} \)
59 \( 1 + (-2.19e4 - 1.84e4i)T + (1.24e8 + 7.04e8i)T^{2} \)
61 \( 1 + (5.14e4 + 1.87e4i)T + (6.46e8 + 5.42e8i)T^{2} \)
67 \( 1 + (-6.34e3 + 3.59e4i)T + (-1.26e9 - 4.61e8i)T^{2} \)
71 \( 1 + (-8.69e3 + 1.50e4i)T + (-9.02e8 - 1.56e9i)T^{2} \)
73 \( 1 + (-6.65e3 - 1.15e4i)T + (-1.03e9 + 1.79e9i)T^{2} \)
79 \( 1 + (1.23e4 + 6.98e4i)T + (-2.89e9 + 1.05e9i)T^{2} \)
83 \( 1 + (-5.94e3 - 3.37e4i)T + (-3.70e9 + 1.34e9i)T^{2} \)
89 \( 1 + (-5.75e4 - 9.96e4i)T + (-2.79e9 + 4.83e9i)T^{2} \)
97 \( 1 + (4.42e4 - 3.71e4i)T + (1.49e9 - 8.45e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.07247367207255966419520628090, −15.06420872685844789872268902525, −12.59947545622171595027744540322, −11.90856583220524287952392094661, −10.63531877134924786525665656788, −9.484578754920586741229507759222, −7.50618049555551463038681217039, −5.36136481233902475518076715579, −3.62109580607140917734041876796, −0.40152723977565310597273465462, 2.96937308634909386230539112650, 6.03033551422289563966427996867, 7.18129587185938218552723705639, 8.076833261450141590096781026918, 10.90118317307444266624043838164, 11.56312952378616340345593378073, 12.86713359222765641316882742946, 14.62258640894863069960885857767, 15.82001038456211992270804009156, 16.54714453773386618204737435209

Graph of the $Z$-function along the critical line