Properties

Label 2-3e3-27.11-c10-0-7
Degree $2$
Conductor $27$
Sign $-0.538 + 0.842i$
Analytic cond. $17.1546$
Root an. cond. $4.14181$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−22.3 + 26.6i)2-s + (195. + 144. i)3-s + (−32.2 − 183. i)4-s + (−1.50e3 + 4.13e3i)5-s + (−8.21e3 + 1.98e3i)6-s + (1.91e3 − 1.08e4i)7-s + (−2.52e4 − 1.45e4i)8-s + (1.74e4 + 5.64e4i)9-s + (−7.65e4 − 1.32e5i)10-s + (6.62e4 + 1.82e5i)11-s + (2.01e4 − 4.04e4i)12-s + (−4.16e5 + 3.49e5i)13-s + (2.46e5 + 2.93e5i)14-s + (−8.91e5 + 5.91e5i)15-s + (1.13e6 − 4.11e5i)16-s + (2.10e5 − 1.21e5i)17-s + ⋯
L(s)  = 1  + (−0.698 + 0.832i)2-s + (0.804 + 0.593i)3-s + (−0.0315 − 0.178i)4-s + (−0.481 + 1.32i)5-s + (−1.05 + 0.255i)6-s + (0.113 − 0.644i)7-s + (−0.770 − 0.444i)8-s + (0.294 + 0.955i)9-s + (−0.765 − 1.32i)10-s + (0.411 + 1.13i)11-s + (0.0807 − 0.162i)12-s + (−1.12 + 0.941i)13-s + (0.457 + 0.545i)14-s + (−1.17 + 0.779i)15-s + (1.07 − 0.392i)16-s + (0.148 − 0.0855i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-0.538 + 0.842i$
Analytic conductor: \(17.1546\)
Root analytic conductor: \(4.14181\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5),\ -0.538 + 0.842i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(0.491727 - 0.898237i\)
\(L(\frac12)\) \(\approx\) \(0.491727 - 0.898237i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-195. - 144. i)T \)
good2 \( 1 + (22.3 - 26.6i)T + (-177. - 1.00e3i)T^{2} \)
5 \( 1 + (1.50e3 - 4.13e3i)T + (-7.48e6 - 6.27e6i)T^{2} \)
7 \( 1 + (-1.91e3 + 1.08e4i)T + (-2.65e8 - 9.66e7i)T^{2} \)
11 \( 1 + (-6.62e4 - 1.82e5i)T + (-1.98e10 + 1.66e10i)T^{2} \)
13 \( 1 + (4.16e5 - 3.49e5i)T + (2.39e10 - 1.35e11i)T^{2} \)
17 \( 1 + (-2.10e5 + 1.21e5i)T + (1.00e12 - 1.74e12i)T^{2} \)
19 \( 1 + (-2.24e6 + 3.88e6i)T + (-3.06e12 - 5.30e12i)T^{2} \)
23 \( 1 + (4.22e6 - 7.45e5i)T + (3.89e13 - 1.41e13i)T^{2} \)
29 \( 1 + (-9.23e6 + 1.10e7i)T + (-7.30e13 - 4.14e14i)T^{2} \)
31 \( 1 + (8.02e5 + 4.54e6i)T + (-7.70e14 + 2.80e14i)T^{2} \)
37 \( 1 + (2.93e7 + 5.09e7i)T + (-2.40e15 + 4.16e15i)T^{2} \)
41 \( 1 + (1.48e7 + 1.76e7i)T + (-2.33e15 + 1.32e16i)T^{2} \)
43 \( 1 + (2.10e8 - 7.67e7i)T + (1.65e16 - 1.38e16i)T^{2} \)
47 \( 1 + (-4.34e8 - 7.66e7i)T + (4.94e16 + 1.79e16i)T^{2} \)
53 \( 1 - 6.71e7iT - 1.74e17T^{2} \)
59 \( 1 + (4.36e8 - 1.20e9i)T + (-3.91e17 - 3.28e17i)T^{2} \)
61 \( 1 + (1.00e7 - 5.70e7i)T + (-6.70e17 - 2.43e17i)T^{2} \)
67 \( 1 + (1.60e9 - 1.34e9i)T + (3.16e17 - 1.79e18i)T^{2} \)
71 \( 1 + (-4.01e8 + 2.31e8i)T + (1.62e18 - 2.81e18i)T^{2} \)
73 \( 1 + (1.66e8 - 2.87e8i)T + (-2.14e18 - 3.72e18i)T^{2} \)
79 \( 1 + (1.78e9 + 1.49e9i)T + (1.64e18 + 9.32e18i)T^{2} \)
83 \( 1 + (1.91e9 - 2.27e9i)T + (-2.69e18 - 1.52e19i)T^{2} \)
89 \( 1 + (3.27e9 + 1.88e9i)T + (1.55e19 + 2.70e19i)T^{2} \)
97 \( 1 + (8.33e9 - 3.03e9i)T + (5.64e19 - 4.74e19i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.63914464121776930522698717419, −14.91435992251018776176954618122, −13.95813140313094420037540842802, −11.81348955120942690455676431599, −10.19495402194067723343095915623, −9.207937541139483244414962957302, −7.39616404949685749910936021544, −7.12543941450311102554951781163, −4.23724250051316144271734641199, −2.69724974542550971278539841372, 0.45222518740054256085516770778, 1.57555474596846138536770417342, 3.23209201193285244459587757783, 5.58376941303205561660569361222, 8.076469380483933315380479162441, 8.746172121369300280450928864141, 9.957459928054298962627544510208, 11.99478287229820320881897956273, 12.36573059626211745084244511598, 14.08914324648988399036859242141

Graph of the $Z$-function along the critical line