Properties

Label 2-3e3-27.11-c10-0-25
Degree $2$
Conductor $27$
Sign $-0.804 + 0.593i$
Analytic cond. $17.1546$
Root an. cond. $4.14181$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (14.7 − 17.6i)2-s + (56.3 − 236. i)3-s + (85.8 + 487. i)4-s + (1.65e3 − 4.54e3i)5-s + (−3.33e3 − 4.48e3i)6-s + (846. − 4.80e3i)7-s + (3.02e4 + 1.74e4i)8-s + (−5.26e4 − 2.66e4i)9-s + (−5.56e4 − 9.63e4i)10-s + (−3.64e3 − 1.00e4i)11-s + (1.19e5 + 7.15e3i)12-s + (4.18e5 − 3.51e5i)13-s + (−7.21e4 − 8.59e4i)14-s + (−9.80e5 − 6.46e5i)15-s + (2.79e5 − 1.01e5i)16-s + (−2.31e6 + 1.33e6i)17-s + ⋯
L(s)  = 1  + (0.462 − 0.550i)2-s + (0.231 − 0.972i)3-s + (0.0838 + 0.475i)4-s + (0.529 − 1.45i)5-s + (−0.428 − 0.577i)6-s + (0.0503 − 0.285i)7-s + (0.923 + 0.533i)8-s + (−0.892 − 0.451i)9-s + (−0.556 − 0.963i)10-s + (−0.0226 − 0.0622i)11-s + (0.482 + 0.0287i)12-s + (1.12 − 0.945i)13-s + (−0.134 − 0.159i)14-s + (−1.29 − 0.851i)15-s + (0.266 − 0.0970i)16-s + (−1.63 + 0.943i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.804 + 0.593i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (-0.804 + 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-0.804 + 0.593i$
Analytic conductor: \(17.1546\)
Root analytic conductor: \(4.14181\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5),\ -0.804 + 0.593i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(0.860867 - 2.61598i\)
\(L(\frac12)\) \(\approx\) \(0.860867 - 2.61598i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-56.3 + 236. i)T \)
good2 \( 1 + (-14.7 + 17.6i)T + (-177. - 1.00e3i)T^{2} \)
5 \( 1 + (-1.65e3 + 4.54e3i)T + (-7.48e6 - 6.27e6i)T^{2} \)
7 \( 1 + (-846. + 4.80e3i)T + (-2.65e8 - 9.66e7i)T^{2} \)
11 \( 1 + (3.64e3 + 1.00e4i)T + (-1.98e10 + 1.66e10i)T^{2} \)
13 \( 1 + (-4.18e5 + 3.51e5i)T + (2.39e10 - 1.35e11i)T^{2} \)
17 \( 1 + (2.31e6 - 1.33e6i)T + (1.00e12 - 1.74e12i)T^{2} \)
19 \( 1 + (-5.49e5 + 9.51e5i)T + (-3.06e12 - 5.30e12i)T^{2} \)
23 \( 1 + (6.29e6 - 1.11e6i)T + (3.89e13 - 1.41e13i)T^{2} \)
29 \( 1 + (-1.16e7 + 1.38e7i)T + (-7.30e13 - 4.14e14i)T^{2} \)
31 \( 1 + (2.63e6 + 1.49e7i)T + (-7.70e14 + 2.80e14i)T^{2} \)
37 \( 1 + (1.55e7 + 2.69e7i)T + (-2.40e15 + 4.16e15i)T^{2} \)
41 \( 1 + (-1.33e8 - 1.59e8i)T + (-2.33e15 + 1.32e16i)T^{2} \)
43 \( 1 + (-2.26e8 + 8.23e7i)T + (1.65e16 - 1.38e16i)T^{2} \)
47 \( 1 + (-1.85e8 - 3.27e7i)T + (4.94e16 + 1.79e16i)T^{2} \)
53 \( 1 + 4.06e7iT - 1.74e17T^{2} \)
59 \( 1 + (-2.56e8 + 7.03e8i)T + (-3.91e17 - 3.28e17i)T^{2} \)
61 \( 1 + (1.57e8 - 8.95e8i)T + (-6.70e17 - 2.43e17i)T^{2} \)
67 \( 1 + (-4.17e8 + 3.50e8i)T + (3.16e17 - 1.79e18i)T^{2} \)
71 \( 1 + (-7.18e8 + 4.14e8i)T + (1.62e18 - 2.81e18i)T^{2} \)
73 \( 1 + (-7.90e8 + 1.36e9i)T + (-2.14e18 - 3.72e18i)T^{2} \)
79 \( 1 + (1.58e9 + 1.33e9i)T + (1.64e18 + 9.32e18i)T^{2} \)
83 \( 1 + (1.98e9 - 2.36e9i)T + (-2.69e18 - 1.52e19i)T^{2} \)
89 \( 1 + (-1.32e9 - 7.66e8i)T + (1.55e19 + 2.70e19i)T^{2} \)
97 \( 1 + (-6.49e9 + 2.36e9i)T + (5.64e19 - 4.74e19i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.70645941452705729298727658579, −13.16120586114414847860101937647, −12.40587484939301049463952395349, −11.02915570456194457722822385078, −8.843925458241782750083186029542, −7.932943572395645749054458153259, −5.94591558728073260619332034260, −4.14406187705689153515096033635, −2.22392669577146636020360485087, −0.908436105859014161493447521507, 2.34395112176892841125388019320, 4.14377136189425688855044795103, 5.81192283653936286737165940418, 6.88588908913295239683454296337, 9.115010079230242717752700305342, 10.43018956933171523243902938272, 11.20310289643419452334576336268, 13.94008912502002453542650108804, 14.15002636319159652197191189677, 15.49004351065328913497296868740

Graph of the $Z$-function along the critical line