Properties

Label 2-3e3-27.11-c10-0-22
Degree $2$
Conductor $27$
Sign $-0.226 + 0.974i$
Analytic cond. $17.1546$
Root an. cond. $4.14181$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (25.1 − 30.0i)2-s + (−210. + 121. i)3-s + (−88.7 − 503. i)4-s + (−969. + 2.66e3i)5-s + (−1.63e3 + 9.37e3i)6-s + (2.75e3 − 1.56e4i)7-s + (1.74e4 + 1.00e4i)8-s + (2.93e4 − 5.12e4i)9-s + (5.55e4 + 9.61e4i)10-s + (−8.89e4 − 2.44e5i)11-s + (7.99e4 + 9.50e4i)12-s + (6.95e4 − 5.83e4i)13-s + (−3.99e5 − 4.76e5i)14-s + (−1.20e5 − 6.78e5i)15-s + (1.23e6 − 4.48e5i)16-s + (9.51e5 − 5.49e5i)17-s + ⋯
L(s)  = 1  + (0.787 − 0.937i)2-s + (−0.865 + 0.501i)3-s + (−0.0866 − 0.491i)4-s + (−0.310 + 0.852i)5-s + (−0.210 + 1.20i)6-s + (0.163 − 0.929i)7-s + (0.531 + 0.306i)8-s + (0.497 − 0.867i)9-s + (0.555 + 0.961i)10-s + (−0.552 − 1.51i)11-s + (0.321 + 0.381i)12-s + (0.187 − 0.157i)13-s + (−0.743 − 0.885i)14-s + (−0.158 − 0.892i)15-s + (1.17 − 0.427i)16-s + (0.669 − 0.386i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.226 + 0.974i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (-0.226 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-0.226 + 0.974i$
Analytic conductor: \(17.1546\)
Root analytic conductor: \(4.14181\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5),\ -0.226 + 0.974i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(1.14953 - 1.44690i\)
\(L(\frac12)\) \(\approx\) \(1.14953 - 1.44690i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (210. - 121. i)T \)
good2 \( 1 + (-25.1 + 30.0i)T + (-177. - 1.00e3i)T^{2} \)
5 \( 1 + (969. - 2.66e3i)T + (-7.48e6 - 6.27e6i)T^{2} \)
7 \( 1 + (-2.75e3 + 1.56e4i)T + (-2.65e8 - 9.66e7i)T^{2} \)
11 \( 1 + (8.89e4 + 2.44e5i)T + (-1.98e10 + 1.66e10i)T^{2} \)
13 \( 1 + (-6.95e4 + 5.83e4i)T + (2.39e10 - 1.35e11i)T^{2} \)
17 \( 1 + (-9.51e5 + 5.49e5i)T + (1.00e12 - 1.74e12i)T^{2} \)
19 \( 1 + (-3.29e5 + 5.71e5i)T + (-3.06e12 - 5.30e12i)T^{2} \)
23 \( 1 + (5.95e6 - 1.05e6i)T + (3.89e13 - 1.41e13i)T^{2} \)
29 \( 1 + (-2.20e7 + 2.63e7i)T + (-7.30e13 - 4.14e14i)T^{2} \)
31 \( 1 + (6.47e6 + 3.67e7i)T + (-7.70e14 + 2.80e14i)T^{2} \)
37 \( 1 + (4.85e7 + 8.40e7i)T + (-2.40e15 + 4.16e15i)T^{2} \)
41 \( 1 + (-9.54e7 - 1.13e8i)T + (-2.33e15 + 1.32e16i)T^{2} \)
43 \( 1 + (-2.00e6 + 7.28e5i)T + (1.65e16 - 1.38e16i)T^{2} \)
47 \( 1 + (1.21e8 + 2.14e7i)T + (4.94e16 + 1.79e16i)T^{2} \)
53 \( 1 + 1.48e8iT - 1.74e17T^{2} \)
59 \( 1 + (4.57e8 - 1.25e9i)T + (-3.91e17 - 3.28e17i)T^{2} \)
61 \( 1 + (-8.02e6 + 4.54e7i)T + (-6.70e17 - 2.43e17i)T^{2} \)
67 \( 1 + (-3.50e8 + 2.94e8i)T + (3.16e17 - 1.79e18i)T^{2} \)
71 \( 1 + (3.45e8 - 1.99e8i)T + (1.62e18 - 2.81e18i)T^{2} \)
73 \( 1 + (-4.38e8 + 7.59e8i)T + (-2.14e18 - 3.72e18i)T^{2} \)
79 \( 1 + (3.18e9 + 2.67e9i)T + (1.64e18 + 9.32e18i)T^{2} \)
83 \( 1 + (4.66e8 - 5.56e8i)T + (-2.69e18 - 1.52e19i)T^{2} \)
89 \( 1 + (8.12e9 + 4.69e9i)T + (1.55e19 + 2.70e19i)T^{2} \)
97 \( 1 + (-8.57e9 + 3.11e9i)T + (5.64e19 - 4.74e19i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31573196097957262065832551560, −13.31479261941533085350678871143, −11.74443418630160992522320973687, −11.01361031087306275054390608487, −10.22965954450096427557911070806, −7.65709882479820317691699940958, −5.81706424671491614213506428553, −4.18099216220005249370029031196, −3.09810983081352207605168402219, −0.66024542569515764841140738133, 1.52531260612953286816156575820, 4.66532455428397263288197775348, 5.44054026839208826993914399614, 6.84789044804019019794867397387, 8.182093733422115608863614789055, 10.28046536825354462725467703318, 12.33141903821701182380548521665, 12.54968484205371050908179794241, 14.21374981055267630342077047882, 15.58540719415743063981499429419

Graph of the $Z$-function along the critical line