Properties

Label 2-3e3-27.11-c10-0-19
Degree $2$
Conductor $27$
Sign $0.988 + 0.151i$
Analytic cond. $17.1546$
Root an. cond. $4.14181$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (26.1 − 31.1i)2-s + (242. − 6.50i)3-s + (−110. − 623. i)4-s + (−1.91e3 + 5.24e3i)5-s + (6.15e3 − 7.74e3i)6-s + (1.31e3 − 7.47e3i)7-s + (1.37e4 + 7.94e3i)8-s + (5.89e4 − 3.16e3i)9-s + (1.13e5 + 1.96e5i)10-s + (5.83e4 + 1.60e5i)11-s + (−3.07e4 − 1.50e5i)12-s + (5.42e5 − 4.55e5i)13-s + (−1.98e5 − 2.36e5i)14-s + (−4.30e5 + 1.28e6i)15-s + (1.21e6 − 4.43e5i)16-s + (−1.73e6 + 1.00e6i)17-s + ⋯
L(s)  = 1  + (0.817 − 0.974i)2-s + (0.999 − 0.0267i)3-s + (−0.107 − 0.609i)4-s + (−0.611 + 1.67i)5-s + (0.791 − 0.996i)6-s + (0.0784 − 0.444i)7-s + (0.420 + 0.242i)8-s + (0.998 − 0.0535i)9-s + (1.13 + 1.96i)10-s + (0.362 + 0.995i)11-s + (−0.123 − 0.606i)12-s + (1.46 − 1.22i)13-s + (−0.369 − 0.440i)14-s + (−0.566 + 1.69i)15-s + (1.16 − 0.422i)16-s + (−1.22 + 0.706i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.988 + 0.151i$
Analytic conductor: \(17.1546\)
Root analytic conductor: \(4.14181\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5),\ 0.988 + 0.151i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(3.98145 - 0.303966i\)
\(L(\frac12)\) \(\approx\) \(3.98145 - 0.303966i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-242. + 6.50i)T \)
good2 \( 1 + (-26.1 + 31.1i)T + (-177. - 1.00e3i)T^{2} \)
5 \( 1 + (1.91e3 - 5.24e3i)T + (-7.48e6 - 6.27e6i)T^{2} \)
7 \( 1 + (-1.31e3 + 7.47e3i)T + (-2.65e8 - 9.66e7i)T^{2} \)
11 \( 1 + (-5.83e4 - 1.60e5i)T + (-1.98e10 + 1.66e10i)T^{2} \)
13 \( 1 + (-5.42e5 + 4.55e5i)T + (2.39e10 - 1.35e11i)T^{2} \)
17 \( 1 + (1.73e6 - 1.00e6i)T + (1.00e12 - 1.74e12i)T^{2} \)
19 \( 1 + (1.02e6 - 1.76e6i)T + (-3.06e12 - 5.30e12i)T^{2} \)
23 \( 1 + (-4.79e6 + 8.45e5i)T + (3.89e13 - 1.41e13i)T^{2} \)
29 \( 1 + (2.44e5 - 2.91e5i)T + (-7.30e13 - 4.14e14i)T^{2} \)
31 \( 1 + (-9.47e5 - 5.37e6i)T + (-7.70e14 + 2.80e14i)T^{2} \)
37 \( 1 + (4.95e7 + 8.57e7i)T + (-2.40e15 + 4.16e15i)T^{2} \)
41 \( 1 + (6.27e7 + 7.47e7i)T + (-2.33e15 + 1.32e16i)T^{2} \)
43 \( 1 + (1.79e8 - 6.53e7i)T + (1.65e16 - 1.38e16i)T^{2} \)
47 \( 1 + (7.21e7 + 1.27e7i)T + (4.94e16 + 1.79e16i)T^{2} \)
53 \( 1 - 7.34e7iT - 1.74e17T^{2} \)
59 \( 1 + (-2.41e8 + 6.62e8i)T + (-3.91e17 - 3.28e17i)T^{2} \)
61 \( 1 + (-1.13e8 + 6.40e8i)T + (-6.70e17 - 2.43e17i)T^{2} \)
67 \( 1 + (-7.57e8 + 6.35e8i)T + (3.16e17 - 1.79e18i)T^{2} \)
71 \( 1 + (8.90e8 - 5.13e8i)T + (1.62e18 - 2.81e18i)T^{2} \)
73 \( 1 + (-7.35e8 + 1.27e9i)T + (-2.14e18 - 3.72e18i)T^{2} \)
79 \( 1 + (-1.00e9 - 8.41e8i)T + (1.64e18 + 9.32e18i)T^{2} \)
83 \( 1 + (-2.30e8 + 2.75e8i)T + (-2.69e18 - 1.52e19i)T^{2} \)
89 \( 1 + (-1.03e9 - 6.00e8i)T + (1.55e19 + 2.70e19i)T^{2} \)
97 \( 1 + (2.58e9 - 9.40e8i)T + (5.64e19 - 4.74e19i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74062182055522575976531036307, −13.68323259187285842020148789973, −12.62402308440894625031367411218, −10.97344059713083041662277233562, −10.39317694817460852275719385647, −8.129358931265146081891077874291, −6.84707809311430173902185666586, −4.01216435648047654104409441100, −3.30123470643838103069642844179, −1.93546689018598918128502919025, 1.26439966920698500869746736958, 3.89492419537251967795349837013, 4.90418126892116859041039799776, 6.68929958630398185474449827949, 8.498370557704732174487852038535, 8.934512429608950588602068617981, 11.57979036869792818509109023625, 13.30306357382564275385807601488, 13.57748882637814188523844616554, 15.23000980555232262565898695723

Graph of the $Z$-function along the critical line