Properties

Label 2-3e3-1.1-c5-0-4
Degree $2$
Conductor $27$
Sign $1$
Analytic cond. $4.33036$
Root an. cond. $2.08095$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.6·2-s + 82.1·4-s − 25.8·5-s − 115.·7-s + 535.·8-s − 276.·10-s + 63.0·11-s − 797.·13-s − 1.23e3·14-s + 3.09e3·16-s + 1.14e3·17-s − 752.·19-s − 2.12e3·20-s + 674.·22-s − 265.·23-s − 2.45e3·25-s − 8.51e3·26-s − 9.47e3·28-s + 7.18e3·29-s + 2.69e3·31-s + 1.59e4·32-s + 1.22e4·34-s + 2.98e3·35-s + 1.11e4·37-s − 8.03e3·38-s − 1.38e4·40-s − 9.94e3·41-s + ⋯
L(s)  = 1  + 1.88·2-s + 2.56·4-s − 0.462·5-s − 0.889·7-s + 2.96·8-s − 0.873·10-s + 0.157·11-s − 1.30·13-s − 1.68·14-s + 3.02·16-s + 0.962·17-s − 0.477·19-s − 1.18·20-s + 0.296·22-s − 0.104·23-s − 0.786·25-s − 2.47·26-s − 2.28·28-s + 1.58·29-s + 0.503·31-s + 2.75·32-s + 1.81·34-s + 0.411·35-s + 1.34·37-s − 0.902·38-s − 1.36·40-s − 0.924·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $1$
Analytic conductor: \(4.33036\)
Root analytic conductor: \(2.08095\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.597140559\)
\(L(\frac12)\) \(\approx\) \(3.597140559\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 10.6T + 32T^{2} \)
5 \( 1 + 25.8T + 3.12e3T^{2} \)
7 \( 1 + 115.T + 1.68e4T^{2} \)
11 \( 1 - 63.0T + 1.61e5T^{2} \)
13 \( 1 + 797.T + 3.71e5T^{2} \)
17 \( 1 - 1.14e3T + 1.41e6T^{2} \)
19 \( 1 + 752.T + 2.47e6T^{2} \)
23 \( 1 + 265.T + 6.43e6T^{2} \)
29 \( 1 - 7.18e3T + 2.05e7T^{2} \)
31 \( 1 - 2.69e3T + 2.86e7T^{2} \)
37 \( 1 - 1.11e4T + 6.93e7T^{2} \)
41 \( 1 + 9.94e3T + 1.15e8T^{2} \)
43 \( 1 - 9.96e3T + 1.47e8T^{2} \)
47 \( 1 - 2.02e4T + 2.29e8T^{2} \)
53 \( 1 - 1.57e4T + 4.18e8T^{2} \)
59 \( 1 + 4.02e4T + 7.14e8T^{2} \)
61 \( 1 + 1.07e4T + 8.44e8T^{2} \)
67 \( 1 + 5.42e4T + 1.35e9T^{2} \)
71 \( 1 + 5.11e4T + 1.80e9T^{2} \)
73 \( 1 - 7.57e3T + 2.07e9T^{2} \)
79 \( 1 + 2.65e4T + 3.07e9T^{2} \)
83 \( 1 + 9.17e4T + 3.93e9T^{2} \)
89 \( 1 - 4.53e4T + 5.58e9T^{2} \)
97 \( 1 - 376.T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.84763133463860043477732310787, −14.87716481169449254114110107138, −13.79865952975042329270695140637, −12.52353871001482257668814694116, −11.86800447323758941027856328906, −10.17461015324595017177747965504, −7.43928491821176510645796548479, −6.06664170951239721015027573340, −4.42910121150512498809314094435, −2.88967846694948628026951494279, 2.88967846694948628026951494279, 4.42910121150512498809314094435, 6.06664170951239721015027573340, 7.43928491821176510645796548479, 10.17461015324595017177747965504, 11.86800447323758941027856328906, 12.52353871001482257668814694116, 13.79865952975042329270695140637, 14.87716481169449254114110107138, 15.84763133463860043477732310787

Graph of the $Z$-function along the critical line