Properties

Label 2-39e2-1.1-c3-0-97
Degree $2$
Conductor $1521$
Sign $-1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.52·2-s + 4.39·4-s − 9.17·5-s + 12.6·8-s + 32.2·10-s + 20.4·11-s − 79.8·16-s − 40.3·20-s − 72.0·22-s − 40.8·25-s + 179.·32-s − 116.·40-s − 196.·41-s − 452·43-s + 89.9·44-s + 640.·47-s − 343·49-s + 143.·50-s − 187.·55-s + 579.·59-s + 944.·61-s + 6.63·64-s + 1.19e3·71-s − 418.·79-s + 732.·80-s + 693.·82-s + 94.6·83-s + ⋯
L(s)  = 1  − 1.24·2-s + 0.549·4-s − 0.820·5-s + 0.560·8-s + 1.02·10-s + 0.561·11-s − 1.24·16-s − 0.450·20-s − 0.698·22-s − 0.326·25-s + 0.991·32-s − 0.460·40-s − 0.750·41-s − 1.60·43-s + 0.308·44-s + 1.98·47-s − 49-s + 0.406·50-s − 0.460·55-s + 1.27·59-s + 1.98·61-s + 0.0129·64-s + 1.98·71-s − 0.595·79-s + 1.02·80-s + 0.933·82-s + 0.125·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + 3.52T + 8T^{2} \)
5 \( 1 + 9.17T + 125T^{2} \)
7 \( 1 + 343T^{2} \)
11 \( 1 - 20.4T + 1.33e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 + 1.21e4T^{2} \)
29 \( 1 + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 + 5.06e4T^{2} \)
41 \( 1 + 196.T + 6.89e4T^{2} \)
43 \( 1 + 452T + 7.95e4T^{2} \)
47 \( 1 - 640.T + 1.03e5T^{2} \)
53 \( 1 + 1.48e5T^{2} \)
59 \( 1 - 579.T + 2.05e5T^{2} \)
61 \( 1 - 944.T + 2.26e5T^{2} \)
67 \( 1 + 3.00e5T^{2} \)
71 \( 1 - 1.19e3T + 3.57e5T^{2} \)
73 \( 1 + 3.89e5T^{2} \)
79 \( 1 + 418.T + 4.93e5T^{2} \)
83 \( 1 - 94.6T + 5.71e5T^{2} \)
89 \( 1 + 1.67e3T + 7.04e5T^{2} \)
97 \( 1 + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.483897910118657352071753898326, −8.247429746656681197432700436546, −7.23495663221123530047904824186, −6.71455830302494320646054356260, −5.40733163364397188505797768215, −4.34302551539624240450587668861, −3.56493847822622501583319031591, −2.13409999330796236444640788122, −1.00429582563569572043564346386, 0, 1.00429582563569572043564346386, 2.13409999330796236444640788122, 3.56493847822622501583319031591, 4.34302551539624240450587668861, 5.40733163364397188505797768215, 6.71455830302494320646054356260, 7.23495663221123530047904824186, 8.247429746656681197432700436546, 8.483897910118657352071753898326

Graph of the $Z$-function along the critical line