Properties

Label 2-39e2-1.1-c3-0-82
Degree $2$
Conductor $1521$
Sign $1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 4-s + 9·5-s + 15·7-s + 21·8-s − 27·10-s + 48·11-s − 45·14-s − 71·16-s − 45·17-s + 6·19-s + 9·20-s − 144·22-s + 162·23-s − 44·25-s + 15·28-s + 144·29-s + 264·31-s + 45·32-s + 135·34-s + 135·35-s + 303·37-s − 18·38-s + 189·40-s + 192·41-s + 97·43-s + 48·44-s + ⋯
L(s)  = 1  − 1.06·2-s + 1/8·4-s + 0.804·5-s + 0.809·7-s + 0.928·8-s − 0.853·10-s + 1.31·11-s − 0.859·14-s − 1.10·16-s − 0.642·17-s + 0.0724·19-s + 0.100·20-s − 1.39·22-s + 1.46·23-s − 0.351·25-s + 0.101·28-s + 0.922·29-s + 1.52·31-s + 0.248·32-s + 0.680·34-s + 0.651·35-s + 1.34·37-s − 0.0768·38-s + 0.747·40-s + 0.731·41-s + 0.344·43-s + 0.164·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.836906247\)
\(L(\frac12)\) \(\approx\) \(1.836906247\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
5 \( 1 - 9 T + p^{3} T^{2} \)
7 \( 1 - 15 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
17 \( 1 + 45 T + p^{3} T^{2} \)
19 \( 1 - 6 T + p^{3} T^{2} \)
23 \( 1 - 162 T + p^{3} T^{2} \)
29 \( 1 - 144 T + p^{3} T^{2} \)
31 \( 1 - 264 T + p^{3} T^{2} \)
37 \( 1 - 303 T + p^{3} T^{2} \)
41 \( 1 - 192 T + p^{3} T^{2} \)
43 \( 1 - 97 T + p^{3} T^{2} \)
47 \( 1 + 111 T + p^{3} T^{2} \)
53 \( 1 - 414 T + p^{3} T^{2} \)
59 \( 1 + 522 T + p^{3} T^{2} \)
61 \( 1 - 376 T + p^{3} T^{2} \)
67 \( 1 + 36 T + p^{3} T^{2} \)
71 \( 1 + 357 T + p^{3} T^{2} \)
73 \( 1 + 1098 T + p^{3} T^{2} \)
79 \( 1 + 830 T + p^{3} T^{2} \)
83 \( 1 - 438 T + p^{3} T^{2} \)
89 \( 1 - 438 T + p^{3} T^{2} \)
97 \( 1 + 852 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.062309809695022575262457973372, −8.564622129983925417101339624712, −7.68358612251608922668343074125, −6.80556297066553138460827886897, −6.03201562519629471182406499423, −4.81266787740726078073899520795, −4.24599134307065832791584040211, −2.64669824757939175634471685911, −1.52225053886497902441473398914, −0.882927424487077650065385911392, 0.882927424487077650065385911392, 1.52225053886497902441473398914, 2.64669824757939175634471685911, 4.24599134307065832791584040211, 4.81266787740726078073899520795, 6.03201562519629471182406499423, 6.80556297066553138460827886897, 7.68358612251608922668343074125, 8.564622129983925417101339624712, 9.062309809695022575262457973372

Graph of the $Z$-function along the critical line