L(s) = 1 | + 3·2-s + 4-s − 9·5-s − 15·7-s − 21·8-s − 27·10-s − 48·11-s − 45·14-s − 71·16-s − 45·17-s − 6·19-s − 9·20-s − 144·22-s + 162·23-s − 44·25-s − 15·28-s + 144·29-s − 264·31-s − 45·32-s − 135·34-s + 135·35-s − 303·37-s − 18·38-s + 189·40-s − 192·41-s + 97·43-s − 48·44-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 1/8·4-s − 0.804·5-s − 0.809·7-s − 0.928·8-s − 0.853·10-s − 1.31·11-s − 0.859·14-s − 1.10·16-s − 0.642·17-s − 0.0724·19-s − 0.100·20-s − 1.39·22-s + 1.46·23-s − 0.351·25-s − 0.101·28-s + 0.922·29-s − 1.52·31-s − 0.248·32-s − 0.680·34-s + 0.651·35-s − 1.34·37-s − 0.0768·38-s + 0.747·40-s − 0.731·41-s + 0.344·43-s − 0.164·44-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1521s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.018932255 |
L(21) |
≈ |
1.018932255 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1−3T+p3T2 |
| 5 | 1+9T+p3T2 |
| 7 | 1+15T+p3T2 |
| 11 | 1+48T+p3T2 |
| 17 | 1+45T+p3T2 |
| 19 | 1+6T+p3T2 |
| 23 | 1−162T+p3T2 |
| 29 | 1−144T+p3T2 |
| 31 | 1+264T+p3T2 |
| 37 | 1+303T+p3T2 |
| 41 | 1+192T+p3T2 |
| 43 | 1−97T+p3T2 |
| 47 | 1−111T+p3T2 |
| 53 | 1−414T+p3T2 |
| 59 | 1−522T+p3T2 |
| 61 | 1−376T+p3T2 |
| 67 | 1−36T+p3T2 |
| 71 | 1−357T+p3T2 |
| 73 | 1−1098T+p3T2 |
| 79 | 1+830T+p3T2 |
| 83 | 1+438T+p3T2 |
| 89 | 1+438T+p3T2 |
| 97 | 1−852T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.976942760629447238606902445799, −8.358419432408291463467998485874, −7.25173457937375322870501830821, −6.64425485580142140233175617013, −5.49947688925844799235584599437, −4.99110435950193780490023977481, −3.94948274356930410424839514114, −3.29056901060642994485092905087, −2.41951943457579296897232703824, −0.39243248543384265385656516099,
0.39243248543384265385656516099, 2.41951943457579296897232703824, 3.29056901060642994485092905087, 3.94948274356930410424839514114, 4.99110435950193780490023977481, 5.49947688925844799235584599437, 6.64425485580142140233175617013, 7.25173457937375322870501830821, 8.358419432408291463467998485874, 8.976942760629447238606902445799