Properties

Label 2-39e2-1.1-c3-0-147
Degree $2$
Conductor $1521$
Sign $-1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 4-s − 9·5-s − 2·7-s − 21·8-s − 27·10-s + 30·11-s − 6·14-s − 71·16-s + 111·17-s + 46·19-s − 9·20-s + 90·22-s + 6·23-s − 44·25-s − 2·28-s + 105·29-s + 100·31-s − 45·32-s + 333·34-s + 18·35-s − 17·37-s + 138·38-s + 189·40-s − 231·41-s − 514·43-s + 30·44-s + ⋯
L(s)  = 1  + 1.06·2-s + 1/8·4-s − 0.804·5-s − 0.107·7-s − 0.928·8-s − 0.853·10-s + 0.822·11-s − 0.114·14-s − 1.10·16-s + 1.58·17-s + 0.555·19-s − 0.100·20-s + 0.872·22-s + 0.0543·23-s − 0.351·25-s − 0.0134·28-s + 0.672·29-s + 0.579·31-s − 0.248·32-s + 1.67·34-s + 0.0869·35-s − 0.0755·37-s + 0.589·38-s + 0.747·40-s − 0.879·41-s − 1.82·43-s + 0.102·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
5 \( 1 + 9 T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 30 T + p^{3} T^{2} \)
17 \( 1 - 111 T + p^{3} T^{2} \)
19 \( 1 - 46 T + p^{3} T^{2} \)
23 \( 1 - 6 T + p^{3} T^{2} \)
29 \( 1 - 105 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 + 17 T + p^{3} T^{2} \)
41 \( 1 + 231 T + p^{3} T^{2} \)
43 \( 1 + 514 T + p^{3} T^{2} \)
47 \( 1 + 162 T + p^{3} T^{2} \)
53 \( 1 + 639 T + p^{3} T^{2} \)
59 \( 1 - 600 T + p^{3} T^{2} \)
61 \( 1 - 233 T + p^{3} T^{2} \)
67 \( 1 + 926 T + p^{3} T^{2} \)
71 \( 1 + 930 T + p^{3} T^{2} \)
73 \( 1 - 253 T + p^{3} T^{2} \)
79 \( 1 + 1324 T + p^{3} T^{2} \)
83 \( 1 - 810 T + p^{3} T^{2} \)
89 \( 1 - 498 T + p^{3} T^{2} \)
97 \( 1 + 14 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.568338841165216619895259235486, −7.905920592436757601726033674712, −6.89290375199929068953503225010, −6.11538744845931173383891097494, −5.20708260822398427193114217223, −4.46423251969212884473115761847, −3.52476243041538322429584076889, −3.09992476495109335889185740232, −1.35922757941284379572215283487, 0, 1.35922757941284379572215283487, 3.09992476495109335889185740232, 3.52476243041538322429584076889, 4.46423251969212884473115761847, 5.20708260822398427193114217223, 6.11538744845931173383891097494, 6.89290375199929068953503225010, 7.905920592436757601726033674712, 8.568338841165216619895259235486

Graph of the $Z$-function along the critical line