L(s) = 1 | + 3·2-s + 4-s − 9·5-s − 2·7-s − 21·8-s − 27·10-s + 30·11-s − 6·14-s − 71·16-s + 111·17-s + 46·19-s − 9·20-s + 90·22-s + 6·23-s − 44·25-s − 2·28-s + 105·29-s + 100·31-s − 45·32-s + 333·34-s + 18·35-s − 17·37-s + 138·38-s + 189·40-s − 231·41-s − 514·43-s + 30·44-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 1/8·4-s − 0.804·5-s − 0.107·7-s − 0.928·8-s − 0.853·10-s + 0.822·11-s − 0.114·14-s − 1.10·16-s + 1.58·17-s + 0.555·19-s − 0.100·20-s + 0.872·22-s + 0.0543·23-s − 0.351·25-s − 0.0134·28-s + 0.672·29-s + 0.579·31-s − 0.248·32-s + 1.67·34-s + 0.0869·35-s − 0.0755·37-s + 0.589·38-s + 0.747·40-s − 0.879·41-s − 1.82·43-s + 0.102·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 3 T + p^{3} T^{2} \) |
| 5 | \( 1 + 9 T + p^{3} T^{2} \) |
| 7 | \( 1 + 2 T + p^{3} T^{2} \) |
| 11 | \( 1 - 30 T + p^{3} T^{2} \) |
| 17 | \( 1 - 111 T + p^{3} T^{2} \) |
| 19 | \( 1 - 46 T + p^{3} T^{2} \) |
| 23 | \( 1 - 6 T + p^{3} T^{2} \) |
| 29 | \( 1 - 105 T + p^{3} T^{2} \) |
| 31 | \( 1 - 100 T + p^{3} T^{2} \) |
| 37 | \( 1 + 17 T + p^{3} T^{2} \) |
| 41 | \( 1 + 231 T + p^{3} T^{2} \) |
| 43 | \( 1 + 514 T + p^{3} T^{2} \) |
| 47 | \( 1 + 162 T + p^{3} T^{2} \) |
| 53 | \( 1 + 639 T + p^{3} T^{2} \) |
| 59 | \( 1 - 600 T + p^{3} T^{2} \) |
| 61 | \( 1 - 233 T + p^{3} T^{2} \) |
| 67 | \( 1 + 926 T + p^{3} T^{2} \) |
| 71 | \( 1 + 930 T + p^{3} T^{2} \) |
| 73 | \( 1 - 253 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1324 T + p^{3} T^{2} \) |
| 83 | \( 1 - 810 T + p^{3} T^{2} \) |
| 89 | \( 1 - 498 T + p^{3} T^{2} \) |
| 97 | \( 1 + 14 p T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.568338841165216619895259235486, −7.905920592436757601726033674712, −6.89290375199929068953503225010, −6.11538744845931173383891097494, −5.20708260822398427193114217223, −4.46423251969212884473115761847, −3.52476243041538322429584076889, −3.09992476495109335889185740232, −1.35922757941284379572215283487, 0,
1.35922757941284379572215283487, 3.09992476495109335889185740232, 3.52476243041538322429584076889, 4.46423251969212884473115761847, 5.20708260822398427193114217223, 6.11538744845931173383891097494, 6.89290375199929068953503225010, 7.905920592436757601726033674712, 8.568338841165216619895259235486