| L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s − 19-s + (0.5 − 0.866i)21-s + (0.939 − 0.342i)25-s + (0.500 + 0.866i)27-s + (−0.173 − 0.984i)28-s + 1.53·31-s + (0.939 + 0.342i)36-s + (1.70 + 0.984i)37-s + ⋯ |
| L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s − 19-s + (0.5 − 0.866i)21-s + (0.939 − 0.342i)25-s + (0.500 + 0.866i)27-s + (−0.173 − 0.984i)28-s + 1.53·31-s + (0.939 + 0.342i)36-s + (1.70 + 0.984i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.585 - 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.585 - 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5098247257\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5098247257\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 + T \) |
| good | 2 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 5 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 - 1.53T + T^{2} \) |
| 37 | \( 1 + (-1.70 - 0.984i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.439 + 1.20i)T + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.439 + 0.524i)T + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.439 - 0.524i)T + (-0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (0.439 - 1.20i)T + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.86659116262260369093287250517, −11.08132644281398497784701044627, −9.841972604950179721925688965407, −9.241813082284408764596729718613, −8.325782184886548084124497698111, −6.75857442434159908319389917089, −6.40642193289514643874027728686, −4.73715340245241738788994312315, −4.05368792781209756199380944555, −2.73316157442354504973908410888,
0.78169091650337380349031349174, 2.68684156072379915195060162685, 4.52557202555545190941733793829, 5.62912528322123446992134405007, 6.27230168895615760336101874052, 7.21763010389751902209129431214, 8.335241189732926326185990298982, 9.663981819894624684256573503254, 10.45387672179324208923031345690, 10.89519750699449590781682960237