Properties

Label 2-397800-1.1-c1-0-109
Degree $2$
Conductor $397800$
Sign $1$
Analytic cond. $3176.44$
Root an. cond. $56.3599$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 3·11-s − 13-s − 17-s − 19-s − 4·23-s − 5·29-s + 5·37-s − 5·41-s − 8·43-s + 5·47-s + 2·49-s − 3·53-s + 6·59-s + 4·61-s + 12·67-s − 17·73-s − 9·77-s + 4·79-s − 16·83-s − 18·89-s + 3·91-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.13·7-s + 0.904·11-s − 0.277·13-s − 0.242·17-s − 0.229·19-s − 0.834·23-s − 0.928·29-s + 0.821·37-s − 0.780·41-s − 1.21·43-s + 0.729·47-s + 2/7·49-s − 0.412·53-s + 0.781·59-s + 0.512·61-s + 1.46·67-s − 1.98·73-s − 1.02·77-s + 0.450·79-s − 1.75·83-s − 1.90·89-s + 0.314·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 397800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 397800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(397800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(3176.44\)
Root analytic conductor: \(56.3599\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 397800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 17 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88584559178515, −12.50126585187427, −11.98746630834381, −11.48712918454160, −11.27928835966607, −10.55445594849231, −10.01454651333364, −9.796042849998644, −9.355483433506393, −8.894810683697499, −8.332749275600584, −8.008566282430399, −7.165018202709155, −6.959767686709142, −6.501957249781917, −5.981635169693371, −5.611486165134009, −4.980834176296871, −4.334232298777299, −3.793693842762618, −3.629246974805066, −2.759802699390878, −2.457736163613853, −1.623523772053044, −1.168922493420474, 0, 0, 1.168922493420474, 1.623523772053044, 2.457736163613853, 2.759802699390878, 3.629246974805066, 3.793693842762618, 4.334232298777299, 4.980834176296871, 5.611486165134009, 5.981635169693371, 6.501957249781917, 6.959767686709142, 7.165018202709155, 8.008566282430399, 8.332749275600584, 8.894810683697499, 9.355483433506393, 9.796042849998644, 10.01454651333364, 10.55445594849231, 11.27928835966607, 11.48712918454160, 11.98746630834381, 12.50126585187427, 12.88584559178515

Graph of the $Z$-function along the critical line