Properties

Label 2-3960-1.1-c1-0-36
Degree $2$
Conductor $3960$
Sign $-1$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.41·7-s + 11-s − 1.41·13-s + 4.24·17-s − 6.82·19-s + 2.82·23-s + 25-s + 3.65·29-s + 0.828·31-s − 3.41·35-s + 7.65·37-s − 7.65·41-s + 5.07·43-s − 12.4·47-s + 4.65·49-s − 10.4·53-s + 55-s − 3.17·59-s + 3.17·61-s − 1.41·65-s − 8.48·67-s + 6.48·71-s − 7.07·73-s − 3.41·77-s − 16.4·79-s − 1.75·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.29·7-s + 0.301·11-s − 0.392·13-s + 1.02·17-s − 1.56·19-s + 0.589·23-s + 0.200·25-s + 0.679·29-s + 0.148·31-s − 0.577·35-s + 1.25·37-s − 1.19·41-s + 0.773·43-s − 1.82·47-s + 0.665·49-s − 1.44·53-s + 0.134·55-s − 0.412·59-s + 0.406·61-s − 0.175·65-s − 1.03·67-s + 0.769·71-s − 0.827·73-s − 0.389·77-s − 1.85·79-s − 0.192·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 3.41T + 7T^{2} \)
13 \( 1 + 1.41T + 13T^{2} \)
17 \( 1 - 4.24T + 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 - 2.82T + 23T^{2} \)
29 \( 1 - 3.65T + 29T^{2} \)
31 \( 1 - 0.828T + 31T^{2} \)
37 \( 1 - 7.65T + 37T^{2} \)
41 \( 1 + 7.65T + 41T^{2} \)
43 \( 1 - 5.07T + 43T^{2} \)
47 \( 1 + 12.4T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 3.17T + 59T^{2} \)
61 \( 1 - 3.17T + 61T^{2} \)
67 \( 1 + 8.48T + 67T^{2} \)
71 \( 1 - 6.48T + 71T^{2} \)
73 \( 1 + 7.07T + 73T^{2} \)
79 \( 1 + 16.4T + 79T^{2} \)
83 \( 1 + 1.75T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 3.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.163684674078997994178342669140, −7.24642568476115040161137961396, −6.40803401000670299423274467730, −6.16696095168987411800175414965, −5.10186981458566473880135099115, −4.26631656801897963867301040378, −3.26746097291734380070123010035, −2.64410486088545206910864162385, −1.41389604083740205549666632957, 0, 1.41389604083740205549666632957, 2.64410486088545206910864162385, 3.26746097291734380070123010035, 4.26631656801897963867301040378, 5.10186981458566473880135099115, 6.16696095168987411800175414965, 6.40803401000670299423274467730, 7.24642568476115040161137961396, 8.163684674078997994178342669140

Graph of the $Z$-function along the critical line