Properties

Label 2-396-1.1-c3-0-9
Degree $2$
Conductor $396$
Sign $-1$
Analytic cond. $23.3647$
Root an. cond. $4.83371$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.13·5-s − 0.864·7-s − 11·11-s + 51.6·13-s + 52.8·17-s − 56.2·19-s − 211.·23-s − 98.6·25-s − 174.·29-s + 211.·31-s + 4.43·35-s − 86.9·37-s − 151.·41-s − 74·43-s − 163.·47-s − 342.·49-s − 539.·53-s + 56.4·55-s − 365.·59-s + 499.·61-s − 265.·65-s + 189.·67-s − 751.·71-s + 352.·73-s + 9.50·77-s − 319.·79-s − 811.·83-s + ⋯
L(s)  = 1  − 0.459·5-s − 0.0466·7-s − 0.301·11-s + 1.10·13-s + 0.753·17-s − 0.679·19-s − 1.92·23-s − 0.789·25-s − 1.11·29-s + 1.22·31-s + 0.0214·35-s − 0.386·37-s − 0.575·41-s − 0.262·43-s − 0.507·47-s − 0.997·49-s − 1.39·53-s + 0.138·55-s − 0.805·59-s + 1.04·61-s − 0.506·65-s + 0.345·67-s − 1.25·71-s + 0.564·73-s + 0.0140·77-s − 0.455·79-s − 1.07·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(396\)    =    \(2^{2} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(23.3647\)
Root analytic conductor: \(4.83371\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 396,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 11T \)
good5 \( 1 + 5.13T + 125T^{2} \)
7 \( 1 + 0.864T + 343T^{2} \)
13 \( 1 - 51.6T + 2.19e3T^{2} \)
17 \( 1 - 52.8T + 4.91e3T^{2} \)
19 \( 1 + 56.2T + 6.85e3T^{2} \)
23 \( 1 + 211.T + 1.21e4T^{2} \)
29 \( 1 + 174.T + 2.43e4T^{2} \)
31 \( 1 - 211.T + 2.97e4T^{2} \)
37 \( 1 + 86.9T + 5.06e4T^{2} \)
41 \( 1 + 151.T + 6.89e4T^{2} \)
43 \( 1 + 74T + 7.95e4T^{2} \)
47 \( 1 + 163.T + 1.03e5T^{2} \)
53 \( 1 + 539.T + 1.48e5T^{2} \)
59 \( 1 + 365.T + 2.05e5T^{2} \)
61 \( 1 - 499.T + 2.26e5T^{2} \)
67 \( 1 - 189.T + 3.00e5T^{2} \)
71 \( 1 + 751.T + 3.57e5T^{2} \)
73 \( 1 - 352.T + 3.89e5T^{2} \)
79 \( 1 + 319.T + 4.93e5T^{2} \)
83 \( 1 + 811.T + 5.71e5T^{2} \)
89 \( 1 - 1.10e3T + 7.04e5T^{2} \)
97 \( 1 + 551.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40529560901769179360940352977, −9.602780152248101710406336583547, −8.305205710953796645705507284429, −7.87811740800547413327798666806, −6.50910591695764302787481839212, −5.66994616577643587810566789130, −4.28351314502518495303545676599, −3.36512440568639058159585179703, −1.74515037331068871195572042549, 0, 1.74515037331068871195572042549, 3.36512440568639058159585179703, 4.28351314502518495303545676599, 5.66994616577643587810566789130, 6.50910591695764302787481839212, 7.87811740800547413327798666806, 8.305205710953796645705507284429, 9.602780152248101710406336583547, 10.40529560901769179360940352977

Graph of the $Z$-function along the critical line