Properties

Label 2-396-1.1-c3-0-11
Degree $2$
Conductor $396$
Sign $-1$
Analytic cond. $23.3647$
Root an. cond. $4.83371$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·5-s − 26·7-s + 11·11-s + 52·13-s − 46·17-s − 96·19-s − 27·23-s − 76·25-s − 16·29-s − 293·31-s − 182·35-s − 29·37-s + 472·41-s − 110·43-s + 224·47-s + 333·49-s − 754·53-s + 77·55-s − 825·59-s − 548·61-s + 364·65-s − 123·67-s − 1.00e3·71-s − 1.02e3·73-s − 286·77-s + 526·79-s + 158·83-s + ⋯
L(s)  = 1  + 0.626·5-s − 1.40·7-s + 0.301·11-s + 1.10·13-s − 0.656·17-s − 1.15·19-s − 0.244·23-s − 0.607·25-s − 0.102·29-s − 1.69·31-s − 0.878·35-s − 0.128·37-s + 1.79·41-s − 0.390·43-s + 0.695·47-s + 0.970·49-s − 1.95·53-s + 0.188·55-s − 1.82·59-s − 1.15·61-s + 0.694·65-s − 0.224·67-s − 1.67·71-s − 1.63·73-s − 0.423·77-s + 0.749·79-s + 0.208·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(396\)    =    \(2^{2} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(23.3647\)
Root analytic conductor: \(4.83371\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 396,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - p T \)
good5 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 + 26 T + p^{3} T^{2} \)
13 \( 1 - 4 p T + p^{3} T^{2} \)
17 \( 1 + 46 T + p^{3} T^{2} \)
19 \( 1 + 96 T + p^{3} T^{2} \)
23 \( 1 + 27 T + p^{3} T^{2} \)
29 \( 1 + 16 T + p^{3} T^{2} \)
31 \( 1 + 293 T + p^{3} T^{2} \)
37 \( 1 + 29 T + p^{3} T^{2} \)
41 \( 1 - 472 T + p^{3} T^{2} \)
43 \( 1 + 110 T + p^{3} T^{2} \)
47 \( 1 - 224 T + p^{3} T^{2} \)
53 \( 1 + 754 T + p^{3} T^{2} \)
59 \( 1 + 825 T + p^{3} T^{2} \)
61 \( 1 + 548 T + p^{3} T^{2} \)
67 \( 1 + 123 T + p^{3} T^{2} \)
71 \( 1 + 1001 T + p^{3} T^{2} \)
73 \( 1 + 1020 T + p^{3} T^{2} \)
79 \( 1 - 526 T + p^{3} T^{2} \)
83 \( 1 - 158 T + p^{3} T^{2} \)
89 \( 1 - 1217 T + p^{3} T^{2} \)
97 \( 1 + 263 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43490258510042393693729409379, −9.340391455400642175275609699197, −8.926094348847763044694111436525, −7.50570209137514883352468654595, −6.21850071225756716797766263570, −6.05456491027802811356902335353, −4.28704553877771264587731307061, −3.23370225364755618440609752171, −1.83203510615444164184116545392, 0, 1.83203510615444164184116545392, 3.23370225364755618440609752171, 4.28704553877771264587731307061, 6.05456491027802811356902335353, 6.21850071225756716797766263570, 7.50570209137514883352468654595, 8.926094348847763044694111436525, 9.340391455400642175275609699197, 10.43490258510042393693729409379

Graph of the $Z$-function along the critical line