L(s) = 1 | + 1.73·3-s − i·5-s + 1.99·9-s + 1.73i·11-s − i·13-s − 1.73i·15-s − i·17-s − 25-s + 1.73·27-s + 29-s + 2.99i·33-s − 1.73i·39-s − 1.99i·45-s − 1.73·47-s − 1.73i·51-s + ⋯ |
L(s) = 1 | + 1.73·3-s − i·5-s + 1.99·9-s + 1.73i·11-s − i·13-s − 1.73i·15-s − i·17-s − 25-s + 1.73·27-s + 29-s + 2.99i·33-s − 1.73i·39-s − 1.99i·45-s − 1.73·47-s − 1.73i·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.425203920\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.425203920\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 1.73T + T^{2} \) |
| 11 | \( 1 - 1.73iT - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.73T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 2iT - T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.537218119203944927726220286376, −7.978018907108165640814119507960, −7.41544422845730055219745958040, −6.68902735479707347572189483672, −5.28886286155025898388959890409, −4.68206754014833178583060037693, −3.97851471962543880594130770281, −2.97064759651776962625400815123, −2.24979900847689935477682389354, −1.29618632104580819877361630414,
1.59646771079412109620937701749, 2.48917894556172260893005336881, 3.33550101485453386116903008289, 3.64394913070110952399276718580, 4.66629496976202453060037807522, 6.09975052674398827965950187913, 6.51703713663024606094925999794, 7.45107028408182476548797906625, 8.116309383987843399647398539288, 8.620934144896486810533805281542