L(s) = 1 | + (0.608 − 0.793i)5-s + (0.866 − 0.5i)9-s + (1.30 + 1.30i)13-s + (0.198 + 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s + 1.84i·41-s + (0.130 − 0.991i)45-s + (−0.366 − 1.36i)53-s + (−0.662 + 0.382i)61-s + (1.83 − 0.241i)65-s + (−0.739 + 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
L(s) = 1 | + (0.608 − 0.793i)5-s + (0.866 − 0.5i)9-s + (1.30 + 1.30i)13-s + (0.198 + 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s + 1.84i·41-s + (0.130 − 0.991i)45-s + (−0.366 − 1.36i)53-s + (−0.662 + 0.382i)61-s + (1.83 − 0.241i)65-s + (−0.739 + 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.674440431\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.674440431\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.608 + 0.793i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 1.30i)T + iT^{2} \) |
| 17 | \( 1 + (-0.198 - 0.739i)T + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.517 - 1.93i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 - 1.84iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.662 - 0.382i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.739 - 0.198i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.470930533108821281231982259987, −8.214620851617796815037196807236, −6.95050829907999220654605834447, −6.33456887657352719276813142796, −5.84049881265685798933031272334, −4.60038746118949130947837535324, −4.25437859252723123202701610097, −3.24565989321870136426878551485, −1.80036553905066311931658170668, −1.28301217238724581554223030146,
1.23375566306066413544447781518, 2.28029721270195856769038844325, 3.24053214140901345757023793256, 3.91415239483954902311765517159, 5.17210373226385469999388904761, 5.64305920756410596978973490187, 6.50094030563071988560733070827, 7.30864893673542978583929611170, 7.71022234698632372835050622984, 8.803267991805535863481753377741