Properties

Label 2-3920-140.87-c0-0-0
Degree $2$
Conductor $3920$
Sign $0.868 - 0.495i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.793 + 0.608i)5-s + (0.866 − 0.5i)9-s + (−0.541 − 0.541i)13-s + (0.478 + 1.78i)17-s + (0.258 + 0.965i)25-s + 1.41i·29-s + (0.517 − 1.93i)37-s + 0.765i·41-s + (0.991 + 0.130i)45-s + (−0.366 − 1.36i)53-s + (1.60 − 0.923i)61-s + (−0.0999 − 0.758i)65-s + (−1.78 + 0.478i)73-s + (0.499 − 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯
L(s)  = 1  + (0.793 + 0.608i)5-s + (0.866 − 0.5i)9-s + (−0.541 − 0.541i)13-s + (0.478 + 1.78i)17-s + (0.258 + 0.965i)25-s + 1.41i·29-s + (0.517 − 1.93i)37-s + 0.765i·41-s + (0.991 + 0.130i)45-s + (−0.366 − 1.36i)53-s + (1.60 − 0.923i)61-s + (−0.0999 − 0.758i)65-s + (−1.78 + 0.478i)73-s + (0.499 − 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.868 - 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.868 - 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3920\)    =    \(2^{4} \cdot 5 \cdot 7^{2}\)
Sign: $0.868 - 0.495i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3920} (3167, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3920,\ (\ :0),\ 0.868 - 0.495i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.608297393\)
\(L(\frac12)\) \(\approx\) \(1.608297393\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.793 - 0.608i)T \)
7 \( 1 \)
good3 \( 1 + (-0.866 + 0.5i)T^{2} \)
11 \( 1 + (0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.541 + 0.541i)T + iT^{2} \)
17 \( 1 + (-0.478 - 1.78i)T + (-0.866 + 0.5i)T^{2} \)
19 \( 1 + (0.5 - 0.866i)T^{2} \)
23 \( 1 + (-0.866 - 0.5i)T^{2} \)
29 \( 1 - 1.41iT - T^{2} \)
31 \( 1 + (-0.5 - 0.866i)T^{2} \)
37 \( 1 + (-0.517 + 1.93i)T + (-0.866 - 0.5i)T^{2} \)
41 \( 1 - 0.765iT - T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (-0.866 - 0.5i)T^{2} \)
53 \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-1.60 + 0.923i)T + (0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.866 + 0.5i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (1.78 - 0.478i)T + (0.866 - 0.5i)T^{2} \)
79 \( 1 + (-0.5 + 0.866i)T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.541 - 0.541i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.756400538122844241157240636970, −7.897243252996568563497430707466, −7.15266152344893349109050268087, −6.51830231797661923038663009140, −5.80449049587021431529521091221, −5.09911076583759005315648494763, −3.96608629379632026969066007405, −3.32517142781782395039134914499, −2.21552425600660151434293592183, −1.34256831903997319395807278827, 1.04984633787087071444886035687, 2.11460060210026892770636273291, 2.89191777140031939999129033948, 4.32286267813383801777840362948, 4.75956931242118190008385768078, 5.51523762732652894597236929835, 6.37339735985710400985152353964, 7.20656476810111780840406174094, 7.74065845048154658784118847085, 8.696358143695240585103962442378

Graph of the $Z$-function along the critical line