Properties

Label 2-3920-140.47-c0-0-0
Degree $2$
Conductor $3920$
Sign $0.195 - 0.980i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.130 + 0.991i)5-s + (−0.866 − 0.5i)9-s + (0.541 + 0.541i)13-s + (1.78 + 0.478i)17-s + (−0.965 − 0.258i)25-s + 1.41i·29-s + (−1.93 + 0.517i)37-s − 0.765i·41-s + (0.608 − 0.793i)45-s + (1.36 + 0.366i)53-s + (1.60 + 0.923i)61-s + (−0.607 + 0.465i)65-s + (−0.478 + 1.78i)73-s + (0.499 + 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯
L(s)  = 1  + (−0.130 + 0.991i)5-s + (−0.866 − 0.5i)9-s + (0.541 + 0.541i)13-s + (1.78 + 0.478i)17-s + (−0.965 − 0.258i)25-s + 1.41i·29-s + (−1.93 + 0.517i)37-s − 0.765i·41-s + (0.608 − 0.793i)45-s + (1.36 + 0.366i)53-s + (1.60 + 0.923i)61-s + (−0.607 + 0.465i)65-s + (−0.478 + 1.78i)73-s + (0.499 + 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.195 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.195 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3920\)    =    \(2^{4} \cdot 5 \cdot 7^{2}\)
Sign: $0.195 - 0.980i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3920} (607, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3920,\ (\ :0),\ 0.195 - 0.980i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.134595728\)
\(L(\frac12)\) \(\approx\) \(1.134595728\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.130 - 0.991i)T \)
7 \( 1 \)
good3 \( 1 + (0.866 + 0.5i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.541 - 0.541i)T + iT^{2} \)
17 \( 1 + (-1.78 - 0.478i)T + (0.866 + 0.5i)T^{2} \)
19 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (0.866 - 0.5i)T^{2} \)
29 \( 1 - 1.41iT - T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (1.93 - 0.517i)T + (0.866 - 0.5i)T^{2} \)
41 \( 1 + 0.765iT - T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (0.866 - 0.5i)T^{2} \)
53 \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-1.60 - 0.923i)T + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.866 + 0.5i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (0.478 - 1.78i)T + (-0.866 - 0.5i)T^{2} \)
79 \( 1 + (-0.5 - 0.866i)T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + (0.923 - 1.60i)T + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + (-0.541 + 0.541i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.663762313632796858663584036056, −8.195130374442906153651955733401, −7.12185859261007616423066651587, −6.77983590406673669806175593422, −5.74816343270186011399584454342, −5.38051237957607126660546245206, −3.87579717203422248571402648161, −3.45960391639091371356760889918, −2.61158506499868335801736547538, −1.35239884219236439702332284446, 0.68871297106483726106070601002, 1.90464267110288267970900851895, 3.07916365481965399864885836314, 3.81743632854809517041496668090, 4.89984040033252182815957444784, 5.50328631112357887101326911486, 5.96943252243057780338212101376, 7.19684034048547449544858017731, 8.001094425221408764803501679801, 8.332532081185145219651990063958

Graph of the $Z$-function along the critical line