Properties

Label 2-3920-1.1-c1-0-35
Degree $2$
Conductor $3920$
Sign $1$
Analytic cond. $31.3013$
Root an. cond. $5.59476$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s + 2·11-s − 6·13-s − 3·15-s + 2·17-s + 9·23-s + 25-s + 9·27-s + 3·29-s − 2·31-s + 6·33-s + 8·37-s − 18·39-s + 5·41-s − 43-s − 6·45-s − 8·47-s + 6·51-s + 4·53-s − 2·55-s + 8·59-s + 7·61-s + 6·65-s + 3·67-s + 27·69-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s + 0.603·11-s − 1.66·13-s − 0.774·15-s + 0.485·17-s + 1.87·23-s + 1/5·25-s + 1.73·27-s + 0.557·29-s − 0.359·31-s + 1.04·33-s + 1.31·37-s − 2.88·39-s + 0.780·41-s − 0.152·43-s − 0.894·45-s − 1.16·47-s + 0.840·51-s + 0.549·53-s − 0.269·55-s + 1.04·59-s + 0.896·61-s + 0.744·65-s + 0.366·67-s + 3.25·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3920\)    =    \(2^{4} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(31.3013\)
Root analytic conductor: \(5.59476\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3920} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.552832436\)
\(L(\frac12)\) \(\approx\) \(3.552832436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - T + p T^{2} \)
89 \( 1 - 13 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.445531946071457035342758439215, −7.78747984091549074394747892658, −7.23578016302986501702556097702, −6.65281836855627160860891446656, −5.21800614555602391782680540299, −4.50044027970320622351460760500, −3.68444220862026189222115915519, −2.90295502645666231695581641474, −2.30755956725717539613876163361, −1.04538800149554692365529434659, 1.04538800149554692365529434659, 2.30755956725717539613876163361, 2.90295502645666231695581641474, 3.68444220862026189222115915519, 4.50044027970320622351460760500, 5.21800614555602391782680540299, 6.65281836855627160860891446656, 7.23578016302986501702556097702, 7.78747984091549074394747892658, 8.445531946071457035342758439215

Graph of the $Z$-function along the critical line