Properties

Label 2-3920-1.1-c1-0-17
Degree $2$
Conductor $3920$
Sign $1$
Analytic cond. $31.3013$
Root an. cond. $5.59476$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.414·3-s + 5-s − 2.82·9-s − 0.828·11-s + 2·13-s − 0.414·15-s − 7.65·17-s + 5.65·19-s + 5.58·23-s + 25-s + 2.41·27-s − 7.82·29-s − 0.828·31-s + 0.343·33-s + 5.65·37-s − 0.828·39-s + 5.82·41-s + 6.89·43-s − 2.82·45-s − 11.6·47-s + 3.17·51-s − 5.65·53-s − 0.828·55-s − 2.34·57-s + 4·59-s + 6.65·61-s + 2·65-s + ⋯
L(s)  = 1  − 0.239·3-s + 0.447·5-s − 0.942·9-s − 0.249·11-s + 0.554·13-s − 0.106·15-s − 1.85·17-s + 1.29·19-s + 1.16·23-s + 0.200·25-s + 0.464·27-s − 1.45·29-s − 0.148·31-s + 0.0597·33-s + 0.929·37-s − 0.132·39-s + 0.910·41-s + 1.05·43-s − 0.421·45-s − 1.70·47-s + 0.444·51-s − 0.777·53-s − 0.111·55-s − 0.310·57-s + 0.520·59-s + 0.852·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3920\)    =    \(2^{4} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(31.3013\)
Root analytic conductor: \(5.59476\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3920} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.584778244\)
\(L(\frac12)\) \(\approx\) \(1.584778244\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good3 \( 1 + 0.414T + 3T^{2} \)
11 \( 1 + 0.828T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 7.65T + 17T^{2} \)
19 \( 1 - 5.65T + 19T^{2} \)
23 \( 1 - 5.58T + 23T^{2} \)
29 \( 1 + 7.82T + 29T^{2} \)
31 \( 1 + 0.828T + 31T^{2} \)
37 \( 1 - 5.65T + 37T^{2} \)
41 \( 1 - 5.82T + 41T^{2} \)
43 \( 1 - 6.89T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 + 5.65T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 6.65T + 61T^{2} \)
67 \( 1 - 12.8T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 3.65T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 4.75T + 83T^{2} \)
89 \( 1 + 5.34T + 89T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.536991822524003986900530973817, −7.76930775890374975677673185224, −6.87217944978441966901243712097, −6.24504635145943290349738884230, −5.46294119801304949711694951755, −4.90532558591845159140230600797, −3.81454527462671571841952861186, −2.88617416048873644755226866481, −2.06481874527269829240606787476, −0.72132031669111113963529318538, 0.72132031669111113963529318538, 2.06481874527269829240606787476, 2.88617416048873644755226866481, 3.81454527462671571841952861186, 4.90532558591845159140230600797, 5.46294119801304949711694951755, 6.24504635145943290349738884230, 6.87217944978441966901243712097, 7.76930775890374975677673185224, 8.536991822524003986900530973817

Graph of the $Z$-function along the critical line